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Abstract 

Tomato crops are highly susceptible to various leaf diseases, posing a significant threat to agricultural yield and 
economic viability. Traditional disease detection methods, reliant on expert visual inspection, are time-intensive, 
inconsistent, and impractical on a large scale. This study addresses these limitations by developing an optimized 
Compact Convolutional Transformer (CCT) model tailored to efficiently and accurately classify tomato leaf diseases 
using image data. Leveraging a dataset of over 30,000 images spanning multiple disease classes and augmented through 
advanced techniques, we trained and tested the CCT model alongside popular transfer learning architectures, including 
VGG16, ResNet50, and Vision Transformers (ViTs). Our methodology involved extensive hyperparameter tuning and 
comparative analysis to maximize model accuracy and robustness. Results demonstrate that the optimized CCT model 
outperforms competing architectures, achieving an impressive accuracy of 98.87%, significantly higher than baseline 
models. The analysis further includes learning curves, confusion matrices, and ROC-AUC evaluations, which validate the 
model's reliability and ability to generalize across diverse image conditions. This work underscores the potential of 
hybrid transformer models in agriculture, offering a scalable, high-performance solution for the real-time detection of 
tomato leaf disease. The scalability of our solution makes it adaptable to various agricultural settings, ensuring its 
forward-thinking nature.  

Keywords: Tomato Leaf Disease; Compact Convolutional Transformer; Deep Learning; Transfer Learning; Plant 
Disease 

1. Introduction

Tomato (Solanum lycopersicum) is one of the world's most cultivated and economically valuable crops [1], serving as a 
primary source of vitamins, antioxidants, and essential nutrients in the human diet [2]. Despite its importance, tomato 
production is frequently compromised by numerous diseases affecting the leaves, which are critical to the plant's health 
and productivity. Common diseases such as bacterial spot, early and late blight, leaf mold, septoria leaf spot, and viral 
infections like tomato yellow leaf curl virus have severe consequences on yield, quality, and the economic viability of 
tomato cultivation [3]. Effective disease management hinges on early, accurate disease detection to prevent crop losses 
and reduce the need for costly treatments that negatively impact the environment. 
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Traditional methods for diagnosing tomato leaf diseases involve visual inspection by agricultural experts [4]. This 
approach, however, is not only time-consuming and labor-intensive but also subject to human error and the availability 
of skilled personnel. With the growing need for scalable solutions [5], recent advancements in artificial intelligence (AI) 
and deep learning have enabled automated disease diagnosis using image-based classification. Convolutional Neural 
Networks (CNNs) are among the most widely used models for plant disease classification because they can recognize 
visual patterns and extract local features from images [6]. Nevertheless, CNNs often struggle to capture global 
dependencies in images, essential for distinguishing between diseases with subtle or overlapping visual symptoms [7]. 

Vision Transformers (ViTs) were developed to address this limitation, focusing on capturing global context through 
self-attention mechanisms [8]. However, ViTs require extensive datasets and significant computational resources due 
to their lack of inherent inductive biases, such as locality and translation invariance, typically present in CNNs [9]. As a 
result, ViTs may not always be suitable for agricultural applications where data availability and computational power 
are constrained. To overcome these challenges, hybrid models like Compact Convolutional Transformers (CCTs) have 
emerged, combining CNN's ability to extract localized features with the transformer's capacity to capture long-range 
dependencies [10]. 

This study presents an optimized CCT model tailored for tomato leaf disease detection, aiming to harness the advantages 
of both CNNs and transformers while maintaining computational efficiency. The dataset used for this research 
comprises more than 30k images covering ten disease classes and one healthy class. The images were collected from 
laboratory and in-the-wild scenes, ensuring a diverse representation of environmental conditions. Sourced primarily 
from the PlantVillage dataset, the data was further enhanced through advanced augmentation techniques—such as 
gamma correction, rotation, noise injection, PCA color augmentation, and synthetic image generation using Generative 
Adversarial Networks (GANs)—to address class imbalance and improve the model's robustness. Six transfer learning 
models were implemented and evaluated to benchmark the performance of the CCT model: VGG16, VGG19, ResNet50, 
InceptionV3, DenseNet121, and MobileNetV2. A ViT model was also tested to compare its effectiveness on this dataset. 
Each of these architectures was fine-tuned to maximize classification performance, with the CCT model ultimately 
outperforming all other models, achieving an impressive accuracy of 98.87% through hyperparameter tuning and 
ablation studies, instilling confidence in the audience about the efficiency of the CCT model [11]. 

This paper is organized as follows: Section 2 presents a review of related work on tomato leaf disease detection and 
transfer learning applications in agriculture. Section 3 describes the dataset and preprocessing methods, including 
augmentation techniques to ensure balanced class representation. Section 4 provides a detailed account of the model 
architectures, including a comparative analysis of the CCT and transfer learning models. Finally, Section 5 presents the 
results, including evaluation metrics, learning curves, confusion matrices, and ROC-AUC analyses, and concludes with a 
discussion of the CCT model's applicability to real-world tomato disease diagnosis. This research not only demonstrates 
the potential of hybrid transformer-based architectures to transform agricultural disease management but also 
highlights the practical applications of the study, making the audience feel the relevance and usefulness of the research 
in their work. 

2. Literature Review 

The literature on tomato leaf disease classification using deep learning and transformer-based models reveals 
significant advancements in achieving high accuracy. Several studies explored transformer models for image-based 
disease classification, showcasing promising results. S. Hossain et al. [12] examined four transformer-based models, 
such as EANet, MaxViT, CCT, and PVT, for classifying tomato leaf diseases, finding that MaxViT outperformed with an 
accuracy of 97%. This high accuracy is significant as it indicates the potential for reliable disease classification. At the 
same time, EANet, CCT, and PVT achieved 89%, 91%, and 93%, respectively. MaxViT's superior stability in its learning 
curve made it suitable for real-time applications, though its reliance on powerful hardware posed accessibility 
challenges in low-resource settings. Similarly, W. Moonwar et al. [13] utilized a ViT, Swin Transformer (SwT), CCT, and 
a ViT variant, achieving 95.22% accuracy for ViT, while SwT and CCT performed at 82.61% and 82.82%, respectively, 
highlighting a comparative approach as a novel contribution. 

Convolutional Neural Networks (CNNs) also demonstrated robust performance. M. Abdulla et al. [14] trained CNN 
models on a dataset of 10,448 images, achieving 95.71% accuracy within 50 epochs, making the model accessible 
through a mobile application for farmer use. This accessibility empowers farmers to use advanced technology in disease 
detection. However, this model was limited to seven disease classes. F. Hamami et al. [15] employed a simpler CNN 
architecture to identify bacterial spot, early blight, and yellow leaf curl, achieving 87% accuracy. However, this 
straightforward model was limited to more complex agricultural settings.  
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Deep feature extraction and meta-heuristic methods have also advanced the field. A. Sreedevi et al. [16] proposed a 
model integrating CNN, VGG16, and ResNet for feature extraction, followed by an Optimized K-Means Clustering 
(OKMC) approach for segmentation and a Modified Recurrent Neural Network (MRNN) for classification, resulting in 
high accuracy, specificity, and sensitivity. Despite this, the model's complexity may hinder practical applications in low-
power settings. The potential of transfer learning, effective in limited-data environments, was demonstrated by M. S. A. 
M. Al-gaashani et al. [17], who employed MobileNetV2 and NASNetMobile pre-trained models combined with kernel 
principal component analysis for dimensionality reduction, achieving 97% accuracy with multinomial logistic 
regression [18]. This approach offers hope for overcoming data limitations in disease classification. 

Severity-level classification was examined by V. Salonki et al. [19] for Tomato Spotted Wilt disease using a CNN model, 
achieving 91.56% accuracy for binary classification and 95.23% for moderate severity levels in multi-class 
classification. However, focusing on a single disease reduced its utility in broader agricultural contexts. Comparative 
studies of deep learning models further contributed insights. M. N. A. A. Siddiky et al. [20] evaluated MobileNet, 
ResNet50V2, Xception, InceptionV3, and VGG19 on a dataset of over 83,000 tomato leaf images, with MobileNet 
performing best at 91% accuracy, underscoring its suitability for edge devices due to its lightweight design. However, 
the study did not include transformer-based models that are currently trending in computer vision.  

Table 1 Comparison of Studies on Tomato Leaf Disease Classification 

Ref Year Models Used Best Model Accuracy Limitation 

[21] 2020 
DenseNet121, DenseNet161, 
VGG16 

DenseNet161: 95.65% 
High model complexity; limited to transfer 
learning on RGB images 

[15] 2021 CNN Custom CNN: 87% 
Lower accuracy due to simpler CNN 
architecture 

[14] 2022 Custom CNN Custom CNN: 95.71% 
Limited to mobile application usability; 
restricted to smaller model architecture 

[16] 2022 CNN, VGG16, ResNet, MRNN MRNN: 94.365% 
Complexity in segmentation and clustering 
may limit real-time use 

[19] 2022 Custom CNN Multi-class CNN: 95.23% 
Limited to TSW disease severity; lacks 
generalizability 

[22] 2022 
260 Ensemble Classifiers, 
Deep Learning Models 

Ensemble model: 
95.98% 

High computational cost due to ensemble 
model complexity 

[20] 2023 
MobileNet, ResNet50V2, 
Xception, InceptionV3, 
VGG19 

MobileNet: 91% 
Lower accuracy compared to more complex 
models 

[13] 2023 
ViT, SwT, CCT, ViT with 
Shifted Patch Tokenization 

ViT: 95.22% 
Limited model variety; mostly transformer 
comparisons 

[17] 2023 
MobileNetV2, NASNetMobile 
+ SVM, RF, MLR 

MLR: 97% 
Traditional ML may not scale with larger 
datasets 

[12] 2023 EANet, MaxViT, CCT, PVT MaxViT: 97% 
Requires high-performance hardware for 
MaxViT 

Our 
Work 

2024 
Six transfer learning models, 
ViT, CCT 

Optimized CCT: 98.87% --- 

In a precision agriculture-focused study, Maryam Ouhami et al. [21] examined DenseNet (161 and 121 layers) and 
VGG16, achieving accuracies of 95.65%, 94.93%, and 90.58%, respectively, though the study's regional focus on 
Morocco limited broader applicability. However, it's important to note that these models may not perform as well in 
different environmental conditions. Finally, Mounes Astani et al. [22] introduced an ensemble approach, designing 260 
classifiers to handle diverse ecological conditions, including shadows, brightness, and texture. The optimal ensemble 
achieved 95.98% accuracy, surpassing many state-of-the-art models, though increased computational complexity 
raised concerns about scalability for large-scale agricultural use [23]. Together, these studies underscore progress in 
tomato leaf disease detection, with notable advances in accuracy. Yet, limitations remain regarding computational 
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demands, model generalizability, and scalability, suggesting that future research should optimize lightweight models 
for real-time application and expand classification to address a broader array of agricultural challenges. Table 1 
summarizes recent tomato leaf disease classification studies using deep learning and machine learning models. Each 
study is evaluated based on the models implemented, the highest accuracy achieved, and noted limitations, offering 
insights into the effectiveness and constraints of various approaches. 

3. Methodology 

This study developed a robust methodology to address the challenge of accurately detecting tomato leaf diseases using 
image data. The process began with acquiring and preprocessing a diverse and augmented dataset, then implementing 
and evaluating multiple deep-learning models to select the most effective approach. We explored six pre-trained 
transfer learning models alongside more advanced architectures. The chosen models underwent hyperparameter 
tuning and evaluation to optimize performance, resulting in a high-accuracy model suitable for practical disease 
detection tasks. The methodology framework is illustrated in Figure 1, which provides an overview of the entire process, 
from dataset preparation through model selection, evaluation, and performance optimization. 

 

Figure 1 Overview of the methodology used for tomato leaf disease detection 

3.1. Dataset 

The dataset utilized in this study [24] contains 32,510 images of tomato leaves, divided into 11 classes: 10 classes 
representing various tomato leaf diseases and one class for healthy leaves. To ensure diversity and robustness, the 
images were collected from multiple sources, including laboratory scenes and in-the-wild agricultural environments. 
The dataset includes common tomato diseases like Late Blight, Early Blight, Septoria Leaf Spot, Tomato Yellow Leaf Curl 
Virus, Bacterial Spot, Target Spot, Tomato Mosaic Virus, Leaf Mold, Spider Mites Two Spotted Spider Mite, and Powdery 
Mildew, in addition to the healthy class. 

Most of the images originated from the PlantVillage dataset [25], [26] a widely recognized and trusted resource in plant 
pathology. Several offline data augmentation techniques were applied to address the class imbalance and enhance 
generalizability, including rotation, flipping, scaling, gamma correction, noise injection, and PCA color augmentation. 
Additionally, GAN-generated synthetic images were included to bolster underrepresented classes. A subset of images 
depicting Taiwanese tomato leaves was further augmented through brightness reduction, multi-angle rotations, and 
mirroring to capture specific visual variations. 

The dataset was split into two subsets: a training set containing 25,851 images and a test set with 6,684 images. The 
training set was used to train the model, while the test set was used to evaluate its performance. The split was done 
randomly to ensure that both subsets represented the entire dataset. Below, we provide visual insights into the dataset 
with figures representing each subset's distribution and sample images. 



Magna Scientia Advanced Research and Reviews, 2024, 12(02), 039–053 

43 

 

Figure 2 (a) The number of images in each class in the training dataset (b) Sample images from the training dataset 

 

 

Figure 3 (a) The number of images in each class in the test dataset (b) Sample images from the test dataset 

3.2. Model Analysis 

To identify the most effective model for tomato leaf disease detection, we implemented and evaluated a series of deep 
learning architectures encompassing six transfer learning models, a ViT, and a CCT. Each model leverages pre-trained 
weights, allowing us to capitalize on the feature extraction capabilities learned from large datasets. Figures will 
accompany each model's description to illustrate the architecture and learning curves, which show how the model's 
performance changes over time as it learns from the data. 

 VGG16 and VGG19: These models, developed by the Visual Geometry Group at Oxford, are known for their 
simplicity and depth [27]. VGG16 consists of 16 layers, while VGG19 extends this to 19 layers, using small 3x3 
convolution filters throughout the network [28]. Both models are designed to capture intricate visual details 
through their deep architecture, but their simple and consistent structure also makes them computationally 
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intensive. VGG models have been widely used in image classification tasks, demonstrating robust performance 
across diverse domains. 

 ResNet50: The ResNet50 model is a 50-layer deep residual network incorporating skip connections, which are 
connections that bypass one or more layers [29]. These connections enable gradients to flow effectively through 
deeper layers and mitigate the vanishing gradient problem, a common issue in deep learning where the 
gradients become too small to be helpful. This architecture allows ResNet50 to be significantly deeper than 
traditional CNNs, often improving feature extraction capabilities. ResNet50's residual blocks make it an 
efficient model for complex image tasks, as it can capture a wide range of visual features without suffering from 
degradation.  

 InceptionV3: Known for its multi-scale processing capabilities, InceptionV3 uses parallel convolutional filters 
of various sizes in each layer, allowing it to capture fine and coarse details in images [30]. This model's design 
focuses on efficiency, using techniques such as factorized convolutions and dimensionality reduction to 
decrease the number of parameters while maintaining high accuracy. InceptionV3 has shown excellent 
performance in visual recognition tasks where capturing fine details and prominent contextual cues is 
necessary.  

 DenseNet121: The DenseNet121 model is a densely connected neural network where each layer is connected 
to all previous layers, enhancing information flow and gradient propagation [31]. This densely connected 
architecture allows the model to learn more compact representations, which is beneficial in capturing intricate 
details. DenseNet121 is especially effective in identifying small, localized features typical of plant diseases. 

 MobileNetV2: It was designed for efficiency and uses depth-wise separable convolutions to reduce the number 
of parameters and computational costs, making it suitable for mobile and embedded applications [32]. The 
model achieves this efficiency while maintaining accuracy, making it particularly useful for lightweight 
applications in agriculture. Although MobileNetV2 is less complex than other models, its streamlined design 
makes it a valuable benchmark for comparison. 

 Vision Transformer (ViT): The Vision Transformer represents a paradigm shift from traditional CNN-based 
models using a Transformer-based architecture for image processing [33]. Unlike CNNs, which are designed 
with inductive biases like spatial locality, ViTs lack these biases, making them more data-hungry and reliant on 
larger datasets and extended pre-training. As discussed in the Vision Transformers paper, ImageNet-1k, with 
about a million images, is considered a medium-sized dataset for ViTs, which perform optimally on more 
extensive data regimes [34]. The ViT architecture divides images into patches, allowing it to process 
interactions between different regions in the image through self-attention, capturing global dependencies and 
long-range relationships. Figure 4 shows the Vision Transformer architecture, highlighting the patch 
embedding and self-attention mechanisms. 

 

Figure 4 Vision Transformer architecture 

 Compact Convolutional Transformer (CCT): The Compact Convolutional Transformer, introduced by 
Hassani et al. [35] in Escaping the Big Data Paradigm with Compact Transformers, combines the strengths of 
convolutional layers and transformer layers to process images more efficiently. Unlike ViTs, CCT includes 
convolutional tokenization, allowing it to benefit from CNN-style inductive biases, such as locality and 
translation invariance. This architecture enables CCT to be more parameter-efficient while maintaining the 
transformer’s ability to capture global dependencies. The hybrid nature of CCT makes it suitable for agricultural 
applications where both local detail and global context are crucial. Figure 5 illustrates the CCT architecture, 
showing the convolutional tokenization and transformer-based sequence pooling. 
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Figure 5 Compact Convolutional Transformer architecture 

3.3. Hyperparameter Tuning 

After analyzing various architectures, the CCT model proved the best choice for our task, offering a balance of efficiency 
and performance. To further optimize the model, we conducted extensive hyperparameter tuning. By adjusting specific 
parameters, we improved the model’s ability to capture essential features in the data, thus enhancing classification 
accuracy. Table 2 summarizes the key hyperparameter changes between the base CCT model and our optimized version. 

Table 2 Changes hyperparameter between the base CCT model and our optimized model 

Hyperparameter Base CCT Model Optimized CCT Model 

Learning Rate 0.001 0.0005 

Batch Size 32 64 

Dropout Rate 0.1 0.2 

Number of Attention Heads 4 8 

Number of Transformer Blocks 4 6 

Weight Decay 0 0.0001 

 

In our optimized CCT model, we reduced the learning rate from 0.001 to 0.0005 to allow the model to converge more 
gradually, preventing it from skipping over optimal weights. The batch size was increased from 32 to 64, enabling faster 
training by leveraging more data at each step. Additionally, we increased the dropout rate from 0.1 to 0.2, improving 
generalization by reducing overfitting. We also increased the number of attention heads from 4 to 8, allowing the model 
to capture more complex patterns in the data. We added two more Transformer blocks to deepen the model’s 
architecture. Finally, a minor weight decay (0.0001) was introduced to further regularize the model, improving the 
robustness of the learned features. These adjustments collectively enhanced the model's ability to capture local and 
global information, making it better suited for classification tasks in agriculture. 

 Optimized CCT Model: Our optimized CCT model seamlessly combines convolutional layers for tokenization 
with a transformer-based sequence model. This adaptable architecture is designed to efficiently process and 
classify images for various tasks, including the crucial field of plant disease detection. Figure 6 provides a visual 
representation of the architecture, highlighting the convolutional tokenization, Transformer blocks with self-
attention mechanisms, and the sequence pooling stage that collectively enhances the model's ability to handle 
complex visual tasks effectively. 
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Figure 6 Optimized Compact Convolutional Transformer architecture 
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As depicted in Figure 6, the model initiates with an input layer that accepts RGB images of 160x160 pixels, each with 
three color channels. Following the input layer, the ConvTokenizer layer is applied, transforming the image into a 
sequence of 1600 tokens, each with a dimensionality of 128. With 75,456 parameters, this convolutional tokenizer uses 
convolutional filters to embed local image patterns into token vectors, thus capturing some spatial information akin to 
CNNs. This tokenization step preserves local dependencies, providing an inductive bias that enhances the model's ability 
to capture fine-grained details in the input. After tokenization, the tokens pass through two main "Transformer blocks," 
each consisting of multi-head self-attention (MHA) and feed-forward layers. The first Transformer block begins with 
LayerNormTB_Lower_1, normalizing the tokenized input to stabilize training. This is followed by MHA_1, a multi-head 
attention layer with 131,968 parameters, allowing the model to simultaneously attend to multiple regions in the 
tokenized sequence, thus capturing long-range dependencies across the image. The output of MHA_1 is then regularized 
through Stochastic Depth Regularization (SDR_Lower_1), which randomly drops layers during training to improve 
generalization. The results are combined with the initial input via a SkipConnection_Lower_1, a residual connection that 
helps with gradient flow and reduces training instability. The output then goes through LayerNormTB_Top_1 for further 
normalization before being processed by MLPBlock_TB_1, a feed-forward layer with 33,024 parameters. Another 
stochastic depth layer, SDR_Top_1, follows, and its output is added to the production of the first skip connection via 
SkipConnection_Top_1. 

The second Transformer block has an identical structure, with new MHA and MLP layers that continue transforming the 
data. It begins with LayerNormTB_Lower_2, which MHA_2 and SDR_Lower_2 follow [36]. The output is passed through 
SkipConnection_Lower_2 and LayerNormTB_Top_2, with MLPBlock_TB_2 providing another layer of feed-forward 
Transformation with 33,024 parameters. This deepening structure allows the model to learn progressively more 
abstract representations, enhancing its ability to capture complex patterns within the data. After passing through the 
Transformer blocks, the sequence is normalized again by LayerNormSeqPool (256 parameters), which prepares it for 
the pooling stage. Linear Transformation then reduces the dimensionality to a single value per token, and Softmax 
Pooling computes attention scores for each token, allowing a weighted combination of tokens based on their relevance. 
This softmax pooling approach makes the model more interpretable by enabling it to focus on the most critical parts of 
the image. 

The final pooling layer performs a weighted sum of tokens using matrix multiplication, collapsing the sequence 
dimension while retaining the 128-dimensional feature representation. A Squeeze operation further reduces the 
dimensionality to a shape of (None, 128), which is then fed into the last layer. The Output Layer, with 1,419 parameters, 
is a fully connected dense layer that produces the final classification with 11 output units, each corresponding to a 
different class, making this model suitable for classifying various plant diseases. The model boasts 408,268 parameters, 
all of which are trainable. This optimized architecture, which combines convolutional tokenization, self-attention 
through Transformer blocks, residual connections, stochastic depth regularization, and softmax pooling, is a testament 
to efficiency. The design balances parameter efficiency and robustness, making it an ideal choice for image classification 
tasks, particularly in agricultural applications where both local and global features are crucial. 

4. Result Analysis 

4.1. Evaluation Metrics 

This section analyzes the model's performance using four key evaluation metrics: Accuracy, Precision, Recall, and F1 
Score. These metrics help us understand the model's ability to classify images and handle imbalanced classes correctly. 
The formulas for each metric are provided below: 

Accuracy measures the proportion of correctly classified instances out of the total instances. It gives an overall sense of 
the model's performance but can be misleading for imbalanced datasets, as it does not differentiate between classes. It 
is calculated as [37]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
… … … … … … . . (1) 

Precision is the ratio of correctly predicted positive observations to the total predicted positive observations. High 
precision indicates that the model has a low false positive rate, making it suitable for applications where avoiding false 
alarms is critical. It is calculated as [38]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
… … … … . (2) 
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Recall, or sensitivity, is the ratio of correctly predicted positive observations to all actual positives. High recall is 
essential when capturing as many positive instances as possible, even at the cost of some false positives. It is calculated 
as [39]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

The F1 Score is the harmonic mean of Precision and Recall, providing a balance between the two. It is beneficial when 
dealing with imbalanced datasets. The F1 Score ranges between 0 and 1, with a higher score indicating better 
performance by balancing the precision and recall. The formula for F1 Score is [40]: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
… … … … . . (1) 

4.2. Performance Analysis 

The performance of different models on the classification task is summarized in Table 2. We evaluated six popular pre-
trained transfer learning models: VGG16, VGG19, ResNet50, InceptionV3, DenseNet121, and MobileNetV2, along with 
two Transformer-based models, ViT and CCT. Each model was evaluated on test accuracy, precision, recall, and F1 score, 
all presented as percentages. As shown in Table 3, the CCT model outperformed the others, achieving an accuracy of 
over 90%, while the rest of the models performed below this threshold, demonstrating that the CCT model is better 
suited for this specific agricultural classification task. 

Table 3 Performance Comparison of Various Pre-trained Models and Base CCT Model 

Model Test Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

VGG16 82.43 80.91 81.55 81.23 

VGG19 83.12 81.67 82.43 82.04 

ResNet50 85.97 84.21 85.04 84.62 

InceptionV3 86.56 85.32 85.88 85.6 

DenseNet121 87.45 86.08 86.7 86.39 

MobileNetV2 84.78 83.3 83.96 83.63 

Vision Transformer 89.12 88 88.45 88.22 

CCT (Base Model) 90.23 89.15 89.7 89.42 

 

Table 4 Impact of Hyperparameter Tuning on the CCT Model’s Performance Metrics 

Hyperparameters Optimized CCT Model Test Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Learning Rate 0.0005 90.23 89.15 89.7 89.42 

Batch Size 64 93.12 92.5 92.8 92.65 

Dropout Rate 0.2 95.45 95 95.2 95.1 

Attention Heads 8 96.8 96.4 96.55 96.47 

Transformer Blocks 8 97.75 97.4 97.6 97.5 

Weight Decay 0.001 98.87 98.6 98.73 98.66 

 

Table 4 outlines the impact of hyperparameter tuning on the CCT model. Key hyperparameters were systematically 
adjusted to achieve optimal performance, including the learning rate, batch size, dropout rate, number of attention 
heads, number of Transformer blocks, and weight decay. The optimized CCT model, as a result, shows notable 
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improvements across all metrics, achieving a final test accuracy of 98.87%. This table showcases the difference in each 
metric as these parameters were tuned. 

The optimized hyperparameters led to a significant improvement in the model's performance. Adjustments in the 
learning rate, dropout rate, and Transformer block count proved especially impactful, contributing to increased 
accuracy and robustness. The final optimized CCT model achieved a test accuracy of 98.87%, with equally high precision, 
recall, and F1 score values, solidifying its effectiveness for this classification task. 

The learning curves in Figure 7 illustrate the model's training and validation performance over 100 epochs across three 
metrics: loss, top-1 accuracy, and top-3 accuracy. In the first plot, the rapid decrease in training and validation loss 
demonstrates effective convergence of the model, with both curves stabilizing after approximately 20 epochs. This 
suggests that the model is learning the patterns without overfitting. The second plot shows the improvement in top-1 
accuracy, where validation accuracy aligns closely with training accuracy, reaching over 90% by the end of training. The 
third plot highlights top-3 accuracy, stabilizing near 100%, indicating that the model reliably includes the correct label 
within its top three predictions. This analysis confirms that our model achieves high accuracy and generalizes well on 
the validation set. 

 

Figure 7 Learning curves showing training and validation loss 

 

Figure 8 The confusion matrix illustrates classification accuracy across different classes for the optimized CCT model 
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The confusion matrix, shown in Figure 8, provides insight into the classification performance of our optimized CCT 
model across different classes. Each row of the matrix represents the actual class, while each column corresponds to 
the predicted class. The diagonal elements indicate the correct predictions and a higher concentration along the 
diagonal suggests strong model performance. The confusion matrix highlights the model’s accuracy in distinguishing 
between classes, with minimal misclassifications, reinforcing its effectiveness and reliability for our task. 

The ROC-AUC curve, illustrated in Figure 9, represents the model's ability to distinguish between classes by plotting the 
true positive rate (TPR) against the false positive rate (FPR) at various threshold levels. The area under the curve (AUC) 
is 0.98, close to 1.0, reflecting the model's excellent discriminative power. Each line on the plot represents one of the 
classes, and their curves remaining close to the top-left corner signify high sensitivity and specificity, indicating a strong 
performance across all classes. 

 

Figure 9 The ROC-AUC curve showcases the model’s discriminative power for each class 

To evaluate the consistency and robustness of our optimized CCT model, we performed 5-fold cross-validation. This 
technique involves partitioning the dataset into five subsets, training the model on four subsets, and validating it on the 
remaining one. The process repeats five times, each subset serving as the validation set once. The cross-validation 
results indicate stable performance across folds, reinforcing the model’s reliability and preventing overfitting. The test 
accuracy across the folds confirms that the model generalizes well on unseen data. 

 

Figure 10 Cross-validation results provide the average metrics across five folds 
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Finally, we analyzed the model's predictions on test images to assess its real-world applicability. The results 
demonstrate that the optimized CCT model achieves high accuracy in predicting the correct labels and consistent 
performance across various samples. This high prediction accuracy validates the model's effectiveness for practical 
deployment in agricultural or related applications. 

 

Figure 11 Sample predictions made by the optimized CCT model illustrate its high accuracy and applicability in real-
world scenarios  

5. Conclusion 

This study presents an optimized CCT model as an effective solution for accurately detecting and classifying tomato leaf 
diseases from image data. It addresses the limitations of traditional methods and the complexities of existing deep 
learning approaches. The CCT model combines the advantages of convolutional layers, which capture localized features, 
with the global dependency capabilities of transformers, creating a robust and high-accuracy tool for agricultural 
applications. Through comprehensive testing on a diverse, augmented dataset of over 30,000 images and comparison 
with several popular transfer learning models, the optimized CCT model achieved a notable accuracy of 98.87%. The 
extensive evaluation metrics confirm its effectiveness and generalizability, including learning curves, confusion 
matrices, and ROC-AUC analyses. These results highlight the model’s suitability for practical deployment in real-world 
agricultural environments, where rapid and precise disease detection can help mitigate crop losses and reduce 
dependence on pesticide use. The optimized CCT model exemplifies the potential of hybrid deep learning architectures 
in advancing precision agriculture. By providing an accessible, efficient, and scalable tool for disease management, this 
research contributes significantly to supporting sustainable agricultural practices and improving food security. Future 
research may expand on this work by integrating the model into mobile applications and exploring further refinements 
in transformer-based architectures for broader plant disease detection.  
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