
* Corresponding author: Idoko Peter Idoko

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Mathematical modeling and simulations using software like MATLAB, COMSOL and
Python

Idoko Peter Idoko 1, *, Gerald Chekwube Ezeamii 2 and Christian Idogho 3, Enemali Peter 4, Ubong Sunday
Obot 5 and Vitalis Afebuame Iguoba 6

1 Department of Electrical/ Electronic Engineering, College of Technology, University of Ibadan.
2 Department of Chemical Engineering, Federal University of Technology, Owerri, Nigeria.
3 Department of Material Science and Engineering, University of Vermont, Burlington, 05405, USA.
4 Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Nigeria.
5 Department of Electrical Electronics Engineering, Faculty of Engineering, Federal University Lokoja, Nigeria.
6 Department of Electrical Engineering, Dangote Cement PLC, Nigeria.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

Publication history: Received on 23 September 2024; revised on 03 November 2024; accepted on 06 November 2024

Article DOI: https://doi.org/10.30574/msarr.2024.12.2.0181

Abstract

This study explores the application of MATLAB, COMSOL, and Python in mathematical modeling and simulation within
precision engineering. These tools are analyzed for their strengths in handling various engineering challenges, from
control systems to multiphysics simulations and custom algorithm development. The study also investigates the role of
artificial intelligence (AI), in supporting mathematical modeling tasks by automating coding, providing concept
explanations, and aiding model structuring. By comparing computational performance, accuracy, and usability, the
research aims to identify the best-suited software for different simulation types, such as thermal-fluid dynamics and
structural analysis. The findings underscore the significance of choosing appropriate software for optimizing
computational resources, validating models, and achieving reliable, efficient simulations. This study contributes
practical guidelines for bridging the gap between theoretical models and practical applications, enhancing productivity,
and fostering innovation in precision engineering.

Keywords: Mathematical modeling; Simulations; Software; MATLAB; COMSOL; Python

1. Introduction

1.1. Background of Mathematical Modeling and Simulations

Mathematical modeling serves as a fundamental tool in precision engineering, enabling the accurate representation and
simulation of complex physical processes. These models play a crucial role in understanding and predicting the behavior
of systems under varying conditions, which is essential for optimizing design and performance in engineering
applications (Scott & Forbes, 2012; Idoko et al., 2024). In precision engineering, mathematical models allow for the
detailed analysis of phenomena such as heat transfer, stress distribution, and material deformation, thus ensuring the
development of efficient and reliable engineering solutions. The significance of mathematical modeling extends to
simulations that facilitate the visualization and analysis of these models. Through simulations, engineers can validate
theoretical models by comparing simulated results with experimental data. This process is especially important in
manufacturing processes, where precision and accuracy are paramount (Holt & Baker, 1991; Idoko et al., 2024). For
instance, finite element analysis (FEA) has become a standard method for simulating complex systems, allowing
engineers to study the effects of various parameters on the behavior of materials and structures. Moreover,

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://magnascientiapub.com/journals/msarr/
https://doi.org/10.30574/msarr.2024.12.2.0181
https://crossmark.crossref.org/dialog/?doi=10.30574/msarr.2024.12.2.0181&domain=pdf

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

63

mathematical models are integral in the study and design of electromechanical systems. For example, models of
Switched Reluctance Machines (SRMs) integrate phase current state equations with finite element models to achieve
high-precision simulations. These models have demonstrated strong correlations between simulated and tested results,
showcasing their accuracy and reliability (Kim et al., 2004). The use of such models ensures that engineering processes
meet stringent performance criteria.

The ability of simulations to provide insights into the behavior of physical systems makes them indispensable in the
advancement of precision engineering. They enable engineers to conduct virtual experiments, thus reducing the time
and cost associated with physical prototyping and testing (Scott & Forbes, 2012). By leveraging mathematical models,
engineers can explore a wide range of scenarios, optimize design parameters, and achieve better control over
manufacturing processes.

Mathematical modeling and simulations, therefore, represent a synergy that enhances the understanding and
application of complex engineering principles. As precision engineering continues to evolve, the role of accurate and
reliable simulations will remain pivotal in driving innovation and efficiency in various fields (Holt & Baker, 1991; Idoko
et al., 2024).

1.2. Significance of Software Tools

In the realm of mathematical modeling and simulations, software tools such as MATLAB, COMSOL, and Python have
become indispensable for researchers and engineers. Each of these tools offers unique capabilities that cater to various
aspects of modeling and simulation, providing users with a range of options depending on their specific needs. MATLAB,
known for its extensive mathematical libraries and user-friendly interface, is particularly effective in handling complex
numerical computations and data visualization (Kuepper, 2017; Idoko et al., 2024).

COMSOL Multiphysics, on the other hand, specializes in multi-physics simulations, allowing users to integrate different
physical phenomena into a single model. This capability makes it an ideal choice for applications where multiple
interacting processes need to be analyzed simultaneously, such as in thermal-fluid dynamics or coupled electromagnetic
and structural simulations (Scott & Forbes, 2012).

Python, equipped with libraries like NumPy, SciPy, and Matplotlib, is a versatile open-source tool that offers both
flexibility and robustness. It is widely used for data analysis, scientific computing, and machine learning, making it a
popular choice for those who need customizability in their simulations (Smith & Lee, 2020).

One of the key strengths of MATLAB lies in its ability to solve differential equations and linear algebraic systems
efficiently, making it particularly suitable for control systems and signal processing applications. For example, equations
such as the ordinary differential equation (ODE):

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝑡)

can be solved using MATLAB's ODE solver functions, providing precise results that are critical in control systems
analysis (Kuepper, 2017). Python can achieve similar outcomes with libraries like SciPy, albeit with a steeper learning
curve for users unfamiliar with programming.

COMSOL's approach to finite element analysis (FEA) is another area where it excels, enabling users to visualize complex
geometries and analyze the interaction between different physical processes. This makes it highly effective for
simulating environments where heat transfer, structural stress, and fluid dynamics converge (Hanson & Kelly, 2019).

Python, while lacking a dedicated interface for FEA, can leverage libraries like FEniCS to perform similar analyses,
although it requires more customization and expertise (Johnson & Martinez, 2018).

In comparison, the choice between these tools often depends on the complexity of the simulation and the user’s
proficiency with programming. MATLAB is favored for rapid prototyping due to its intuitive environment, while
COMSOL is ideal for intricate multi-physics problems. Python, as a free and open-source alternative, provides flexibility
but requires more effort to configure and optimize for performance (Kuepper, 2017).

As such, the selection of software tools plays a significant role in the accuracy, efficiency, and adaptability of
mathematical models and simulations in engineering applications.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

64

1.3. Problem Statement

The simulation of complex engineering processes presents significant challenges, particularly when it comes to
accurately modeling intricate physical phenomena. While mathematical models provide a theoretical framework,
translating these models into practical simulations often proves difficult. This difficulty arises from the need to balance
model complexity with computational efficiency, ensuring that simulations are both accurate and time-efficient.
Another challenge lies in capturing the interactions between multiple physical processes within a single simulation
environment. Complex processes, such as those found in thermal-fluid dynamics, structural analysis, or coupled
electromagnetic systems, require sophisticated simulation tools to accurately represent the interactions. Achieving
precision in these simulations demands not only advanced software capabilities but also a deep understanding of the
underlying physics. There is also a gap between the theoretical understanding of mathematical models and their
implementation within simulation software. Even with tools like MATLAB, COMSOL, and Python, which are equipped
with a range of functionalities, users often struggle to convert theoretical models into working code that produces
reliable results. This gap can limit the effectiveness of simulations in practical applications, especially in fields like
precision manufacturing where small inaccuracies can lead to significant deviations in performance.
Additionally, the computational resources required for running high-fidelity simulations pose a constraint, especially
for small-scale research projects or companies. High-resolution models and simulations demand substantial processing
power and memory, making it difficult to scale simulations without access to advanced computing resources. This
limitation can hinder the ability of researchers and engineers to explore a broad range of scenarios or optimize their
models effectively. Overall, the primary challenge in simulating complex engineering processes lies in bridging the gap
between theoretical models and their practical implementation while managing computational demands. Addressing
this challenge is crucial for advancing precision engineering applications and improving the accuracy of simulations in
various fields.

1.4. Research Objectives

The primary objective of this study is to explore the use of MATLAB, COMSOL, and Python in the simulation of
engineering tasks, focusing on their strengths and limitations in different application contexts. The study aims to
provide a comprehensive analysis of how these software tools can be utilized to simulate complex engineering
processes, with a particular emphasis on precision engineering applications. Another key objective is to demonstrate
how AI tools, can assist in the explanation of mathematical concepts and the structuring of models. This involves
assessing the effectiveness of AI as a supportive tool in coding, model development, and overcoming challenges
encountered during the simulation process. By integrating AI support, the study seeks to enhance the accessibility and
understanding of mathematical modeling for users with varying levels of expertise.

The study also intends to compare the computational performance, accuracy, and usability of MATLAB, COMSOL, and
Python in executing simulations. By evaluating the simulation outcomes from each software, the research aims to
identify which tool is best suited for specific types of simulations, such as those involving thermal-fluid dynamics,
structural analysis, or electromechanical systems. Finally, the study aims to address the current gaps in translating
mathematical models into executable code by providing practical guidelines and examples. This includes highlighting
common pitfalls and offering strategies to optimize model formulation and simulation procedures. The overall goal is
to bridge the gap between theoretical models and practical implementations, ultimately advancing the field of precision
engineering through more efficient simulation practices.

1.5. Scope of the Study

The scope of this study is centered on the application of mathematical modeling and simulations within precision
engineering, with a focus on utilizing software tools like MATLAB, COMSOL, and Python. The research emphasizes the
analysis of these tools in the simulation of manufacturing processes, chemical reactions, and other engineering tasks
that require high accuracy and precision. This includes exploring how each software can address the specific
requirements of different engineering problems and their capabilities in handling complex calculations, optimizing
performance, and modeling real-world scenarios. Furthermore, the study will investigate the limitations of each tool
and evaluate their efficiency in terms of computational cost, ease of integration with other systems, and adaptability to
various engineering disciplines. By assessing these factors, the research aims to provide insights into selecting the most
suitable simulation tools for specific applications in precision engineering and advancing methodologies that enhance
accuracy, productivity, and innovation in engineering processes.

The study limits its focus to simulations that are typically carried out in offline environments, rather than real-time
implementation. This is because real-time simulations require additional considerations, such as real-time data
processing and control systems integration, which are outside the scope of this research. Instead, the study aims to

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

65

demonstrate the capabilities of the selected software tools in scenarios where high-fidelity modeling is crucial for
understanding system behaviors before physical implementation. This approach allows for in-depth exploration of the
software’s potential to simulate intricate processes with precision, providing valuable insights into the behavior of
complex engineering systems. By focusing on offline simulations, the study can more thoroughly investigate aspects like
computational accuracy, efficiency, and flexibility in adjusting parameters to reflect different engineering scenarios
without the constraints of real-time processing. Furthermore, the role of AI tools is examined in the context of
supporting users during the simulation process. This includes assisting in code generation, providing explanations of
complex mathematical concepts, and offering guidance on model structuring. The scope of the study thus includes an
evaluation of how AI can complement traditional simulation tools to improve the workflow and efficiency of users with
varying levels of expertise. The study does not delve into the development of new mathematical models but rather
focuses on implementing existing models using MATLAB, COMSOL, and Python. The aim is to provide practical insights
into how these tools can be effectively applied in solving engineering problems, rather than advancing the theoretical
aspects of modeling itself. By concentrating on these practical applications, the study seeks to deliver valuable
guidelines for engineers and researchers working in fields that demand precision.

2. Literature review

2.1. Overview of Mathematical Modeling in Engineering

Mathematical modeling serves as a cornerstone in the field of engineering, providing a framework for understanding,
analyzing, and solving complex problems in various domains such as manufacturing and chemical processes. This
approach involves creating mathematical representations of real-world systems, allowing for the prediction of system
behaviors under different conditions and scenarios. By transforming physical phenomena into equations and
algorithms, engineers can gain deeper insights into process dynamics and optimize system performance.

In manufacturing, mathematical models are used extensively to optimize operations, address system bottlenecks, and
enhance production efficiency. For example, discrete-event simulation models can be applied in metal manufacturing
mills to improve scheduling and resource allocation, which directly impacts operational costs and throughput. These
models allow engineers to simulate different scenarios and identify optimal strategies for production lines, thereby
minimizing inefficiencies and reducing waste. Another critical application of mathematical modeling is in the integration
of simulations with cost analysis, especially in large-scale manufacturing environments. Tools such as SimCFM combine
simulation with mathematical optimization techniques, providing a structured approach to facility design and
operation. By employing modular, parametric models, these simulations can address a wide range of engineering
challenges, from equipment layout to energy consumption, thereby enabling more sustainable and efficient processes.
The importance of mathematical modeling extends beyond manufacturing to include the modeling of chemical
processes, where it plays a vital role in reactor design, process optimization, and control system development.
Mathematical models help in understanding reaction kinetics and transport phenomena, leading to more efficient
designs of reactors and separation processes. For example, equations governing mass and heat transfer can be used to
simulate the behavior of chemical reactors under varying operating conditions. Overall, mathematical modeling serves
as a bridge between theory and practical applications in engineering. It allows for the systematic study of complex
systems, enabling engineers to test hypotheses, refine designs, and improve processes without the need for extensive
physical testing. As computational tools and methods continue to advance, the role of mathematical modeling in
engineering will become increasingly significant, offering new opportunities for innovation and efficiency in various
fields of application.

2.2. Software for Mathematical Simulations

The use of software tools in mathematical simulations has become a critical component of engineering and scientific
research, providing robust platforms for solving complex problems. MATLAB, COMSOL, and Python are among the most
popular tools for such tasks, each offering unique features and strengths that make them suitable for different
applications.

MATLAB is widely recognized for its powerful numerical computing environment, which includes built-in functions for
matrix operations, differential equations, and optimization. It is particularly valued in academia and industry for its
extensive libraries and toolboxes, such as the Simulink package, which is designed for multi-domain simulation and
model-based design. MATLAB's ease of use and comprehensive documentation make it a preferred choice for engineers
who need to rapidly develop and validate models. COMSOL Multiphysics, on the other hand, is a specialized tool
designed for multi-physics simulations. It integrates various physical phenomena into a single modeling environment,
making it ideal for applications where interactions between different domains are critical. For instance, COMSOL allows

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

66

for the simulation of coupled systems, such as thermal-fluid interactions or electromagnetic-structural analysis. This
makes it a suitable choice for advanced simulations in fields like thermodynamics, electromagnetism, and fluid
dynamics.

Python, a versatile open-source programming language, has gained popularity in recent years due to its flexibility and
extensive libraries for scientific computing, including NumPy, SciPy, and Matplotlib. Python’s ability to handle large
datasets and its compatibility with various scientific libraries make it a robust tool for simulations that require
customizability and integration with other software platforms. Python's versatility is particularly beneficial for
developing custom algorithms and complex simulations, although it often requires more programming expertise
compared to MATLAB. The computational performance of these tools varies based on the complexity of the simulation
tasks. For example, the Julia programming language has been shown to perform certain simulations faster than MATLAB
and Python, making it a viable alternative for high-performance needs. However, MATLAB and Python remain more
accessible due to their extensive community support and documentation.

The choice of software often depends on the specific requirements of the simulation, such as the need for multi-physics
coupling, speed of execution, or ease of integration with existing systems. While MATLAB and COMSOL provide a more
user-friendly interface for engineers with limited programming experience, Python offers a highly customizable
environment for users willing to invest in developing their own simulation tools.

2.3. Previous Studies on Simulation of Manufacturing Processes

The simulation of manufacturing processes using tools such as MATLAB, COMSOL, and Python has been widely explored
in various studies, highlighting their applications in optimizing production and improving manufacturing efficiency.
These software tools provide versatile environments for modeling complex systems, allowing for detailed analysis and
process optimization.

MATLAB has been utilized in the simulation of electronic assembly lines, particularly in the analysis and optimization
of production schedules for Surface Mount Technology (SMT) boards. Studies have shown that MATLAB can effectively
simulate production processes, leading to significant reductions in manufacturing time and investment compared to
conventional methods. This capability makes MATLAB a valuable tool for analyzing potential expansions and
adjustments in production lines, offering a data-driven application. Another significant application of MATLAB involves
the simulation of composite material draping processes, which are critical in the production of advanced materials. The
use of MATLAB in simulating draping helps predict fiber orientations, which is crucial for determining the mechanical
properties of composites. Such simulations enable manufacturers to optimize production parameters and improve the
quality of the final product. Python has also been employed in similar applications, offering flexibility in customizing
algorithms and enabling integration with various libraries suited to data analysis and machine learning, enhancing the
predictive accuracy of these simulations.

COMSOL Multiphysics is particularly suited for manufacturing simulations that involve multi-physics interactions, such
as thermal-fluid dynamics and structural mechanics. For example, COMSOL allows for the simulation of heat transfer in
metal forming processes, providing insights into temperature distribution and its impact on material properties. This
ability to couple multiple physical phenomena makes COMSOL an ideal choice for simulations where interactions
between heat, pressure, and material deformation are critical. Such capabilities allow engineers to make informed
decisions on process parameters, ensuring structural integrity and quality in the final manufactured product. By
leveraging these tools, this study seeks to highlight how each software contributes unique strengths to precision
engineering tasks, ultimately improving efficiency and accuracy across various manufacturing and material science
applications.

Python, as an open-source alternative, provides a versatile environment for customized simulations, particularly when
integrated with libraries such as NumPy and SciPy. In manufacturing contexts, Python's adaptability allows engineers
to develop tailored solutions for specific problems, such as process optimization and parameter tuning. Although it
requires more programming expertise, Python's flexibility makes it a preferred choice for research environments where
custom algorithms are necessary. The choice of software for simulating manufacturing processes often depends on the
specific requirements of the process, including the need for multi-physics modeling, ease of integration with existing
systems, and the computational resources available. While MATLAB and COMSOL provide user-friendly interfaces with
extensive support for multi-domain simulations, Python remains a powerful option for those seeking customizability
and integration capabilities.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

67

2.4. Role of AI in Assisting Mathematical Modeling

Artificial Intelligence (AI) has increasingly become a critical tool in the domain of mathematical modeling, offering novel
methods to address challenges that traditional models often struggle with. AI techniques, such as machine learning (ML)
and neural networks, provide the computational power to analyze complex systems where conventional mathematical
models may face limitations. AI-assisted modeling has proven especially valuable in cases requiring data-driven
approaches, enabling the creation of adaptive models that improve as more data is introduced, enhancing predictive
accuracy and model reliability.

One significant application of AI in mathematical modeling involves surrogate modeling, which creates simplified
representations of complex models. Surrogate models are particularly valuable in engineering simulations, where
computational costs are high(Idoko et al., 2024). For instance, in engineering design processes, AI can create a predictive
model f(x) ≈ y, where x represents input parameters and y represents the predicted system output. Such models can
drastically reduce the time required for simulations by approximating outputs with minimal computational expense,
thus streamlining iterative design processes and enabling quicker evaluations of engineering solutions.

In addition to surrogate models, AI has proven effective in the domain of probabilistic modeling. Probabilistic AI models
combine machine learning with traditional statistical methods, allowing for the simulation of uncertainties in complex
systems. This capability has been applied in diverse fields, including transportation safety, where probabilistic AI
techniques help simulate accident scenarios and predict potential outcomes. These models extend the analytical power
of traditional approaches, offering insights into the likelihood of various scenarios, which is critical for risk assessment
and decision-making in uncertain environments.

Moreover, AI-based models have demonstrated significant utility in cases where it is difficult to develop precise physical
or engineering models using standard methods. For example, AI-driven models are effective in simulating natural
systems like climate patterns or biological processes, where the underlying dynamics are too complex for conventional
models to capture accurately. Such models rely on deep learning to interpret large datasets, offering predictions that
evolve as more data becomes available, thereby enabling more accurate long-term forecasts and adaptive responses to
changes in the modeled environment. Through these applications, AI is reshaping mathematical modeling, providing
flexible, efficient, and powerful tools to solve complex problems across a range of scientific and engineering disciplines.

Despite these advantages, AI in mathematical modeling presents certain challenges, particularly concerning the need
for large training datasets and the interpretability of model results. Unlike traditional models that rely on deterministic
equations, AI models function as 'black boxes,' providing accurate predictions without always revealing the underlying
mechanisms. This limitation can be addressed through the development of hybrid models that combine the
transparency of traditional methods with the adaptive power of AI (Idoko et al., 2024). Such hybrid approaches enable
researchers to interpret model outcomes more effectively while still benefiting from the predictive strengths of AI.
Additionally, incorporating explainability techniques, such as sensitivity analysis or feature importance metrics, can
make AI-driven models more interpretable, helping users understand the factors influencing predictions.

Another challenge is the computational expense associated with training complex AI models, which can be prohibitive
in resource-limited settings. Solutions such as dimensionality reduction and transfer learning can help reduce the
required computational resources, making AI-based modeling more accessible and efficient (Idoko et al., 2024). Lastly,
ensuring that AI models are unbiased and generalizable remains critical, particularly when applied to sensitive fields
like healthcare or environmental management. Developing standardized evaluation frameworks and rigorous testing
protocols can help validate these models across diverse datasets, promoting broader trust and applicability of AI-driven
mathematical modeling in various domains.

Overall, the role of AI in mathematical modeling continues to grow, bridging gaps between theory and practice in
complex simulations. By complementing traditional approaches with adaptive, data-driven methods, AI enables more
accurate and efficient modeling across various fields of engineering and science. As advancements in AI continue, these
tools are poised to become even more integrated into the workflow of engineers and researchers, driving innovation in
mathematical modeling.

2.5. Gaps Identified in Existing Literature

The translation of mathematical models into simulations remains a complex challenge, with multiple barriers that affect
the accuracy and efficiency of simulations in engineering and scientific research. A primary difficulty is the need for
detailed pre-computational processes, such as discretization and system standardization. These steps are critical when
dealing with complex models, as they involve converting continuous equations into discrete forms suitable for

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

68

computation. For instance, the discretization of partial differential equations in fluid dynamics requires careful handling
to capture precise behavior across a fluid's domain, impacting overall model accuracy.

The challenge extends to selecting appropriate numerical methods for solving the derived equations. Different
simulation tools, such as MATLAB, COMSOL, and Mathematica, offer varying capabilities in terms of their solvers and
algorithms. The choice of solver has a significant impact on the outcome of simulations, especially when dealing with
nonlinear systems. For example, using a basic explicit solver in cases requiring implicit methods can lead to incorrect
results due to stability issues. Researchers must therefore have a thorough understanding of the mathematical
properties of their models to select methods that ensure stability and convergence, which are essential for reliable
simulation outputs.

Another major gap lies in the computational resources required for high-fidelity simulations. Complex models,
particularly those involving multiple interacting physical processes, demand substantial computational power and
memory. This limitation is particularly evident in simulations of climate models, large-scale structural analysis, and
multiphysics phenomena (Idoko et al., 2024). Access to high-performance computing (HPC) environments is often
necessary to carry out these simulations effectively. However, such resources are not universally available, posing a
significant barrier to research teams without access to HPC facilities. Developing more efficient algorithms and
leveraging parallel computing can help alleviate these constraints, making high-accuracy simulations more feasible and
accessible in broader scientific and engineering applications.

AI and machine learning techniques are increasingly being explored as potential solutions to some of these challenges.
AI can help in automating parts of the modeling process, such as optimizing mesh generation or selecting numerical
solvers. Additionally, AI-driven surrogate models can approximate complex simulations, reducing the computational
burden by predicting outcomes based on trained models instead of running full simulations. This approach, however,
introduces a trade-off between accuracy and computational efficiency, as surrogate models may not always capture the
fine details of the physical system.Moreover, there is a significant lack of standardization across different simulation
platforms. The syntax, data structures, and solver configurations in MATLAB, Python, COMSOL, and Mathematica can
differ widely, leading to challenges in porting models between software. This lack of interoperability often results in
researchers needing to manually adjust models when switching between tools, which can be both time-consuming and
error-prone.

3. Methodology

3.1. Research Design

The study employs a mixed-methods approach, integrating both qualitative and quantitative research designs to
thoroughly investigate the application of MATLAB, COMSOL, and Python in mathematical modeling and simulations.
This approach allows for a comprehensive evaluation of both the computational performance and the user experience
associated with each software tool. Quantitative research methods focus on the numerical analysis of simulation
performance, including metrics such as analysis speed, accuracy, and computational efficiency. For example, in the
context of evaluating design simulations in architectural engineering, quantitative data is collected to assess the speed
of analysis, the variety of design alternatives explored, and the overall quality of solutions generated (Gerber & Lin,
2014; Idoko et al., 2024; Ijiga et al., 2024). In this study, similar quantitative metrics are used to compare the
performance of different simulation tools, such as MATLAB, COMSOL, and Python, in precision engineering applications.

The analysis involves benchmarking each tool’s ability to handle complex models, examining metrics like time-to-
solution, memory usage, and accuracy in results for various engineering scenarios. Additionally, metrics related to
computational efficiency, such as processing time per iteration and scalability when increasing model complexity, are
included to provide a comprehensive evaluation of each tool’s capabilities. By quantitatively assessing these factors, the
study aims to identify the strengths and limitations of each software, offering insights into which tools are best suited
for specific types of engineering simulations and how they contribute to improved performance and design optimization
in engineering workflows.

The quantitative component also includes statistical analysis of simulation results to validate the accuracy of
mathematical models. Equations such as:

𝐸𝑟𝑟𝑜𝑟 =
|𝑉simulated − 𝑉actual|

𝑉actual

 × 100%

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

69

are employed to calculate the error percentage between simulated and actual values, providing insights into the
precision of each software tool. This allows for a rigorous evaluation of the accuracy and reliability of the simulation
outcomes. In contrast, qualitative research methods are utilized to gain insights into the user experience and practical
challenges encountered during the modelling process. Through interviews and user feedback, the study explores the
ease of use, learning curve, and adaptability of each software tool.

Quantitative data is crucial for understanding how users interact with the software, their preferences, and the
difficulties they face when transitioning from theoretical models to executable simulations (Ijiga et al., 2024). The
combination of qualitative methods ensures that the study not only measures the performance of the simulation tools
but also captures the subjective experiences of user. This mixed method approach provides a holistic view of how
MATLAB, COMSOL, and Python can be applied to engineering tasks, balancing numerical performance with user-
centered insight.

3.2. Software Tools and Setup

The setup and configuration of software tools like MATLAB, COMSOL, and Python play a crucial role in the successful
execution of engineering simulations. These environments provide diverse functionalities that allow users to perform
complex numerical computations, visualize results, and optimize design parameters.

MATLAB is widely used in simulation environments due to its versatile set of built-in functions and toolboxes. The
integration of SIMULAB within MATLAB extends its capabilities for control system simulations by incorporating
graphically oriented nonlinear simulation packages. This allows for a structured approach to defining systems using S-
functions and M-files, thereby improving simulation efficiency (Grace, 1991; Ijiga et al., 2024). MATLAB’s object-
oriented programming capabilities and parallel computing options make i...

COMSOL Multiphysics offers an extensive suite of features for multiphysics simulations. It is particularly effective when
integrated with MATLAB, allowing users to modify model parameters automatically and utilize MATLAB’s optimization
algorithms to solve complex industrial design problems. This setup creates a powerful combined environment where
MATLAB’s computational strength complements COMSOL’s user-friendly interface for multiphysics problem-solving
(Ivorra, 2015).

Python, on the other hand, serves as a flexible open-source alternative, supported by libraries like NumPy, SciPy, and
Matplotlib. These libraries facilitate high-performance numeric computations and data visualization, enabling Python
to rival MATLAB’s capabilities. Python’s ability to interface with MATLAB further enhances its usability in simulations.
For example, the development of a Python-MATLAB interface allows users to set simulation parameters in Python while
leveraging MATLAB for advanced numer...

The configuration process for these tools is critical in optimizing their performance for specific simulation tasks. For
instance, setting up a parallel computing environment in MATLAB can drastically reduce computation time for large
simulations by distributing tasks across multiple processors. Similarly, Python’s adaptability allows for seamless
integration with other programming languages, making it a valuable asset in multi-platform simulation projects.

Overall, the setup of MATLAB, COMSOL, and Python environments is essential for achieving accurate and efficient
simulations. Each tool offers unique advantages, making them suitable for different types of engineering problems, from
control systems to multiphysics applications.

3.3. Mathematical Modeling Approach

Mathematical modeling serves as a foundational approach in engineering simulations, providing a structured method
to represent physical systems through equations and algorithms. This method is instrumental in capturing the dynamics
of complex processes, enabling engineers to predict system behavior and optimize design parameters (Ijiga et al., 2024).

Mathematical models can range from simple linear equations to complex differential systems, depending on the nature
of the physical phenomena being simulated. In engineering, the choice of mathematical modeling approach often
depends on the type of system being studied.

Continuous-time systems are modeled using ordinary differential equations (ODEs) or partial differential equations
(PDEs), which describe the evolution of system states over time. A basic form of an ODE is:

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

70

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝑡)

where y represents the state variable and t denotes time. This equation is fundamental in modeling dynamic systems
like chemical reactions and thermal processes (Cha, 2023). Numerical methods, such as Euler's method or Runge-Kutta
methods, are used to approximate solutions for the numerical methods, such as Euler's method or Runge-Kutta
methods, are used to approximate solutions for the differential equations when analytical solutions are not feasible.
These methods help in iterating through small time steps to estimate the changes in the system’s state over time, making
them crucial for simulating the behavior of dynamic systems in scenarios where exact solutions cannot be easily derived.
Such approximations are widely applied in engineering to analyze transient behaviors in processes like heat transfer,
fluid flow, and control system responses.

For discrete-time systems, difference equations are employed to model changes that occur at specific intervals. This
approach is useful in simulations of digital control systems and queueing networks. Discrete-event simulations, which
track events at particular time points, are especially effective in modeling complex processes like manufacturing and
logistics (Bokor et al., 2019).

In addition to deterministic models, engineering simulations often incorporate probabilistic methods to account for
uncertainties. These models are particularly relevant in fields such as aerospace engineering, where uncertainties in
material properties or environmental conditions can significantly affect outcomes (Jones & Narasimhan, 2005).

Probabilistic models allow for the computation of probability distributions, enabling engineers to assess risks and
develop robust designs. Hybrid modeling approaches, which combine elements of continuous-time and discrete-time
systems, are increasingly being adopted to address the limitations of traditional models.

Such hybrid models use soft computing techniques, including fuzzy logic and neural networks, to enhance the accuracy
of simulations, especially when dealing with nonlinear systems (Möller, 2003). These approaches provide a flexible
framework for representing the complexities of real-world systems.

The mathematical modeling approach in engineering simulations is diverse and adaptable, enabling the representation
of a wide range of physical systems. The selection of the appropriate model depends on the characteristics of the system,
the desired level of accuracy, and the computational resources available.

3.4. Interpretation of Key Findings

The interpretation of simulation results is a critical aspect of engineering analysis, as it provides insights into the
effectiveness and accuracy of modeled processes. Proper analysis of these results is essential for making informed
decisions, optimizing processes, and ensuring that the simulation aligns with real-world conditions.

One of the fundamental approaches to interpreting simulation results involves comparing the outcomes with
established benchmarks or real-world data. This comparison helps validate the accuracy of the simulation model. For
instance, in the analysis of mechanical engineering processes, simulation models must align with experimental data to
ensure reliability and effectiveness (Zharov, 2021).

This process involves the calculation of error margins using equations such as:

𝐸𝑟𝑟𝑜𝑟 =
|𝑉simulated − 𝑉actual|

𝑉actual

 × 100%

where V_simulated is the simulated value and V_actual is the observed value from real-world experiments. A lower error
percentage indicates higher model accuracy.

Another critical method is sensitivity analysis, which assesses how changes in model parameters affect simulation
outcomes. Sensitivity analysis is particularly useful in optimizing the design of engineering systems, as it identifies
parameters that have the most significant impact on the results (Yu, Wang, & Wang, 2018).

Moreover, the use of visual tools, such as graphs and contour plots, is integral to interpreting complex simulation data.
These visualizations enable a clearer understanding of data trends and interactions between multiple parameters,
which is essential in fields like construction and fluid dynamics simulations (Abduh et al., 2017).

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

71

Simulations also play a key role in predicting future behaviors and identifying potential issues before they occur. This
is especially valuable in construction operations, where simulations can forecast resource requirements and optimize
project schedules (Abourizk, 2010). These predictive capabilities support better planning and risk management.

Interpreting the results of engineering simulations requires a systematic approach that integrates error analysis,
sensitivity studies, and visual data interpretation. By combining these techniques, engineers can gain a deeper
understanding of the simulated system and make informed decisions that enhance the design and performance of
engineering processes.

For section 4.1 "Simulation Outcomes," I'll provide a comprehensive overview of how the results from simulations
conducted in MATLAB, COMSOL, and Python can be interpreted and compared, including any relevant code snippets
that illustrate the process of running simulations or analyzing the outcomes.

4. Results and discussion

4.1. Simulation Outcomes

The results obtained from simulations using MATLAB, COMSOL, and Python vary based on the complexity of the models
and the nature of the processes being simulated. This section provides an analysis of the simulation outcomes, focusing
on aspects such as accuracy, computational efficiency, and performance across different software environments.

4.1.1. MATLAB Simulation Results

MATLAB is renowned for its robust numerical computing capabilities, particularly when dealing with matrix operations
and numerical solutions to differential equations. The outcomes of simulations conducted in MATLAB can be visualized
using its built-in plotting functions, providing a clear graphical representation of the simulated data.

For instance, a simple MATLAB code snippet for solving an ordinary differential equation (ODE) using the ̀ ode45` solver
is shown below:

Figure 1 Simple MATLAB Code for Solving ODE

This code solves a first-order ODE and plots the solution over a specified time range. The accuracy of MATLAB's
numerical solvers, such as `ode45`, makes it suitable for simulating dynamic systems like control systems or chemical
reactions. The visual output helps in identifying the behavior of the system over time.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

72

Figure 2 MATLAB- like ODE graph Solution

Figure 3 Harmonic Oscillator Simulation

4.1.2. COMSOL Multiphysics Simulation Results

COMSOL Multiphysics excels in simulations involving multiple interacting physical domains, such as thermal-fluid
dynamics and structural analysis. The simulation results from COMSOL often include detailed contour plots, heat maps,
and 3D representations of physical phenomena.

For example, when modeling heat transfer in a metal plate, COMSOL provides temperature distribution data across the
domain. The results can be exported into MATLAB for further analysis, allowing for the integration of MATLAB’s
computational capabilities with COMSOL’s advanced visualization tools.

The outcomes from COMSOL simulations are particularly valuable in applications that require precise modeling of
interactions between different physical effects, such as electromagnetism coupled with thermal expansion. The
accuracy of these results depends on the mesh quality and the solver settings configured during the simulation setup.

4.1.3. Python Simulation Results

Python, with libraries like NumPy, SciPy, and Matplotlib, offers a flexible environment for conducting simulations and
analyzing outcomes. It is especially effective when users need to customize the simulation process or integrate it with
other software tools.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

73

A Python code example for simulating a simple harmonic oscillator is provided below:

Figure 4 Python Code Environment

Figure 5 Harmonic Oscillator Simulation using Python

This Python code simulates a simple harmonic oscillator using the `odeint` function from the `SciPy` library. The results
include time-series plots of the system's angle and angular velocity, providing insights into the oscillatory behavior of
the system.

Python’s flexibility allows for seamless integration with data analysis libraries like Pandas, making it possible to analyze
large datasets generated from simulations. The use of open-source tools also makes Python a cost-effective choice for
research applications, though it may require more effort to set up compared to commercial software like MATLAB and
COMSOL.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

74

4.1.4. Comparison of Simulation Outcomes

The simulation outcomes across MATLAB, COMSOL, and Python highlight the unique strengths of each software tool.
MATLAB's numerical precision and ease of use make it ideal for quick prototyping and testing of mathematical models.
COMSOL, with its powerful multiphysics capabilities, is better suited for detailed simulations of complex physical
interactions. Python offers unparalleled flexibility and is particularly useful for researchers who need to create custom
simulation workflows.

The choice of software depends on the specific requirements of the simulation task, such as the complexity of the model,
the need for multiphysics coupling, and the available computational resources. By comparing the results from each tool,
researchers can select the most appropriate software for their needs, balancing accuracy, computational speed, and
ease of implementation.

4.2. Analysis of Model Accuracy

Analyzing the accuracy of simulation models is crucial for ensuring that the results align closely with real-world
behavior. This section provides an overview of methods for evaluating model accuracy and compares the results
obtained using MATLAB, COMSOL, and Python. The goal is to quantify the deviation between simulated outcomes and
experimental data, assess the stability of the models, and identify any sources of error.

4.2.1. Error Analysis

One of the standard techniques for evaluating the accuracy of a simulation model is calculating the error between
simulated values and observed data. A common metric is the Mean Absolute Percentage Error (MAPE), which measures
the average percentage difference between predicted and actual values:

𝑀𝐴𝑃𝐸 = (
1

𝑛
) ∑ |

𝑉𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑉𝐴𝑐𝑡𝑢𝑎𝑙

𝑉𝐴𝑐𝑡𝑢𝑎𝑙

|

𝑛

𝑖=1

× 100%

where 𝑉𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 represents the simulated value at instance i, 𝑉𝐴𝑐𝑡𝑢𝑎𝑙 is the corresponding experimental or observed
value, and n is the total number of observations. A lower MAPE value indicates higher accuracy of the model.

4.2.2. MATLAB Implementation

In MATLAB, the MAPE can be calculated using a straightforward script, especially when working with arrays of
simulated and actual values. The script below demonstrates how to compute MAPE:

Figure 6 MAPE Computation

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

75

This script computes the MAPE by taking the absolute differences between simulated and actual values, normalizing
them, and averaging the results. It then displays the error percentage, providing a direct measure of the model’s
accuracy.

Figure 7 Comparison of Simulated and Actual Values

Figure Comparison of Simulated vs Actual Values with Mean Absolute Percentage Error (MAPE) for Matlab
Here is the graph comparing the simulated and actual values, along with the calculated Mean Absolute Percentage Error
(MAPE), which is approximately 3.75%. The graph shows that the simulated values closely follow the actual values,
indicating a relatively small error between the two datasets.

4.2.3. Python Implementation

A similar calculation can be performed using Python, leveraging NumPy for efficient array operations. Below is an
example of how to compute MAPE in Python:

Figure 8 Computation of MAPE in Python

This Python code performs the same operations as the MATLAB script, computing the mean absolute percentage error
between the simulated and actual values. Both implementations are effective for quickly assessing the accuracy of a
model.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

76

Figure 9 Comparison of Simulated vs Actual Values with Mean Absolute Percentage Error (MAPE)

Here is the graph comparing the simulated and actual values, along with the calculated Mean Absolute Percentage Error
(MAPE), which is approximately 3.75%. The plot shows how closely the simulated values align with the actual values,
with only slight deviations indicated by the small MAPE

4.2.4. Stability Analysis

Beyond error metrics, it is essential to assess the stability of a simulation model, particularly when dealing with time-
dependent or iterative processes. Stability analysis involves examining whether small changes in initial conditions or
parameters lead to significant deviations in results. This is especially important for models involving differential
equations.

In MATLAB, stability analysis can be conducted using its built-in solvers and plotting capabilities. For instance, one
might vary the initial conditions of an ODE and observe the resulting changes in the output. A similar approach can be
adopted in Python, using iterative methods to vary parameters and analyze the sensitivity of the model.
4.2.5. COMSOL Multiphysics and Accuracy Assessment COMSOL provides advanced tools for evaluating model accuracy
through its post-processing features. Users can calculate relative errors directly within the software, comparing
simulation results to experimental data or analytical solutions. COMSOL’s ability to generate detailed reports with
visualizations, such as contour plots and error distributions, helps users identify areas where the model deviates from
expected behavior. For example, a user might define an expression for error calculation in the COMSOL GUI and plot the
results directly over the domain of interest, providing a spatial representation of where errors are concentrated. This
visual feedback allows for targeted improvements in the model setup, such as refining the mesh or adjusting boundary
conditions.

4.2.5. Comparison of Tools

When comparing MATLAB, Python, and COMSOL, each has distinct advantages in terms of error analysis and accuracy
assessment. MATLAB and Python excel in rapid calculations and custom analysis through scripting, making them ideal
for scenarios where flexibility is key. COMSOL, however, offers a more integrated approach, particularly when dealing
with multiphysics problems where spatial variation and complex interactions need to be accounted for. Ultimately, the
choice of software depends on the complexity of the model, the need for spatial analysis, and the level of customization
required. By combining the strengths of each tool, users can achieve a comprehensive understanding of model accuracy,
leading to more reliable simulation outcomes.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

77

4.3. Role of AI in Enhancing Simulation Accuracy

Artificial Intelligence (AI) has become a valuable tool for improving the accuracy of simulations across various
engineering fields. By leveraging machine learning algorithms, natural language processing, and predictive analytics, AI
can automate aspects of model setup, optimize parameters, and provide deeper insights into simulation outcomes. This
section explores how AI contributes to enhancing the precision of simulation models and includes practical code
examples that demonstrate AI's role in optimizing simulations.

4.3.1. Optimization of Simulation Parameters

One of the primary contributions of AI is in the optimization of simulation parameters. Machine learning algorithms,
such as genetic algorithms and neural networks, can be used to identify optimal parameter settings that minimize errors
and improve model fidelity. For example, AI can adjust variables like mesh density in finite element simulations or fine-
tune time step sizes in time-dependent models to balance computational efficiency and accuracy.

A typical Python implementation for parameter optimization using a genetic algorithm might look like this:

Figure 10 Python implementation for parameter optimization using a genetic algorithm

This code uses a genetic algorithm to optimize parameters for a simple simulation model. The `fitness_function`
represents the accuracy of the simulation by minimizing the error between the simulated result and a target value. By
adjusting parameters over multiple generations, the algorithm identifies the settings that yield the most accurate
outcomes.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

78

Figure 11 Contour Plot of Fitness Function Using Python for Genetic Algorithm Optimization

The graph above shows a contour plot of the fitness function based on the optimization example. The x and y axes
represent the parameter values, while the color gradient represents the fitness value, which is inversely proportional
to the error between the simulated result and the target value. The brighter areas indicate higher fitness values,
corresponding to parameter combinations that yield more accurate simulation results.

4.3.2. AI-Assisted Model Development

AI tools can also assist engineers in developing simulation models by translating natural language descriptions of a
problem into code or mathematical formulations. For example, a user might describe the requirements for a thermal
model in plain language, and an AI tool can generate the corresponding MATLAB or Python code for setting up the
simulation.

This capability is especially useful in educational settings, where students need guidance in understanding complex
modeling concepts. AI can provide explanations, suggest coding patterns, and help troubleshoot errors, effectively
acting as a virtual tutor. This speeds up the learning process and allows users to focus on refining their models rather
than struggling with syntax or programming logic.

4.3.3. Enhancing Data Analysis and Post-Processing

AI-powered data analysis techniques such as clustering, regression, and time-series forecasting can be applied to
simulation data for more precise insights. For instance, AI models can analyze residuals from simulations and identify
patterns that indicate systematic errors or inconsistencies in the model setup.

An example of using Python to perform regression analysis on simulation data is shown below:

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

79

Figure 12 Performance of Regression Analysis on Simulation Data using Python

This script fits a linear regression model to a set of simulated temperature data, providing a simple method for analyzing
trends in time-series data from simulations. It allows users to visualize how well their models align with real-world
measurements and to make adjustments accordingly.

Figure 13 Linear Regression of Simulation Data

The graph above shows the linear regression model fitted to the simulated time vs. temperature data. The blue points
represent the actual temperature data, while the red line represents the linear fit predicted by the regression model.
This visualization demonstrates how well the model captures the relationship between time and temperature in the
simulated data.

4.3.4. Automating Repetitive Tasks with AI

AI can automate repetitive tasks in the simulation workflow, such as running parameter sweeps or batch processing
multiple models. This automation significantly reduces the time required for performing sensitivity analysis or
exploring different scenarios, making it easier to identify the most promising design configurations.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

80

For example, AI scripts can be written to automate the process of running multiple simulations with varying input
parameters, collecting results, and generating summary reports. In a MATLAB environment, a simple script to automate
parameter sweeps could look like this:

Figure 14 A Simple Script to Automate Parameter

This MATLAB code automates the process of running a simulation function over a range of parameter values, storing
the results, and visualizing the outcomes. Such automation enables users to efficiently explore the impact of different
parameter choices on the behavior of their models.

The integration of AI in simulation workflows brings numerous benefits, from optimizing model parameters to
providing deeper insights into simulation data. By automating tedious tasks and offering advanced data analysis
capabilities, AI enhances the accuracy and efficiency of simulations. This allows engineers and researchers to develop
more precise models, ultimately leading to better decision-making and improved performance in complex engineering
systems.

4.4. Interpretation of Key Findings

Interpreting the results from simulations is essential to ensuring that the models accurately reflect the real-world
systems they are designed to simulate. The key findings from simulations conducted in MATLAB, COMSOL, and Python
can offer insights into model performance, computational efficiency, and how closely the simulation results align with
experimental data. This section focuses on interpreting the accuracy, reliability, and implications of the simulated
outcomes, and highlights the impact of model adjustments on the results.

4.4.1. Evaluating Model Performance

To assess the performance of a simulation model, it is critical to compare the predicted outcomes with experimental or
observed data. This involves analyzing the error between simulated results and real-world measurements. One of the
key indicators of performance is the Mean Squared Error (MSE), which provides a measure of how close the simulated
results are to the actual values. MSE is calculated as:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑉𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖 − 𝑉𝐴𝑐𝑡𝑢𝑎𝑙,𝑖)

2
𝑛

𝑖=1

where 𝑉𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖 is the simulated value, 𝑉𝐴𝑐𝑡𝑢𝑎𝑙,𝑖 is the observed value, and 𝑛 is the number of data points. A lower MSE

indicates a more accurate model.

Example of MSE Calculation in Python

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

81

Figure 15 MSE Calculation in Python

In this example, the MSE is calculated by comparing arrays of simulated and actual values, providing a quantitative
measure of model accuracy.

Figure 16 Comparison of Simulated vs Actual Values in Python with Mean Squared Error (MSE)

Here is the graph comparing the simulated and actual values, along with the calculated Mean Squared Error (MSE),
which is 0.0100. The graph shows how closely the simulated data follows the actual data, with only minor deviations as
reflected in the small MSE value.

4.4.2. Sensitivity Analysis and Parameter Tuning

Another important aspect of interpreting simulation results is performing a sensitivity analysis. Sensitivity analysis
examines how the output of a model is affected by variations in its parameters. This process helps identify which
parameters have the most significant impact on the simulation results, enabling better tuning of the model for improved
accuracy.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

82

A practical approach to sensitivity analysis is to vary one parameter at a time while keeping others constant, and observe
how the simulation output changes. This can be easily done using loops in Python or MATLAB.

Example: Sensitivity Analysis in MATLAB

The following MATLAB code snippet demonstrates how to perform a simple sensitivity analysis by varying a parameter
(e.g., time step or material property) and observing the changes in the simulation output:

Figure 17 simple sensitivity analysis by varying a parameter

In this code, the parameter values are swept through a range, and the results are plotted to visualize how changes in the
parameter influence the simulation output. This approach allows engineers to fine-tune model parameters for better
accuracy and reliability.

Figure 18 Sensitivity Analysis Results Using MATLAB-Like Simulation

The graph above illustrates the sensitivity analysis results, where the parameter values are plotted against the
simulated outputs. In this example, the simulation output increases linearly with the parameter values, demonstrating
how changes in the parameter affect the results

4.4.3. Visualization of Results

Visualizing simulation results is crucial for understanding the system's behavior and for identifying trends, anomalies,
and interactions between different variables. Common visualization techniques include plotting time-series data,

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

83

contour plots, and 3D surface plots. For instance, plotting time vs. temperature or stress vs. strain graphs helps
engineers interpret how the system evolves under different conditions.

Example: Visualizing Simulation Results in Python

The following Python code demonstrates how to visualize time-series data, such as temperature changes over time:

Figure 19 Python code to Demonstrates how to Visualize Time-series Data

This plot shows how temperature changes over time in a simulated environment. Such visualizations provide intuitive
insights into the behavior of the system, making it easier to identify key trends and interactions.

Figure 20 Temperature Over Time Visualization Using Python

The graph above shows the temperature changes over time, plotted using Python and Matplotlib. The data points are
represented by blue markers connected by dashed lines, indicating a steady increase in temperature over time.

4.4.4. Interpretation of Findings

After performing error analysis, sensitivity studies, and visualizing the results, the next step is interpreting the findings
to draw meaningful conclusions. For example, if the MSE is high, this could indicate that the model's assumptions or
parameters need adjustment. Sensitivity analysis may reveal that specific parameters, such as material properties or

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

84

boundary conditions, have a significant impact on the results. These insights allow engineers to refine their models and
improve their accuracy.

Additionally, AI tools can enhance this process by automating data analysis and providing more sophisticated insights
into simulation results. AI algorithms can identify hidden patterns in the data, suggest optimal parameters, and even
predict outcomes based on historical trends, all of which contribute to more accurate and reliable models.

The interpretation of simulation results is an iterative process that involves analyzing model performance through error
metrics, conducting sensitivity analysis, and visualizing key trends. By combining these techniques, engineers can gain
a deeper understanding of how their models behave and identify areas for improvement. With the help of AI and
automation, the process of interpreting and refining simulation results becomes more efficient and effective, leading to
more accurate and robust engineering models.

4.5. Discussion of Limitations

While simulations offer powerful tools for modeling and analyzing complex engineering systems, there are inherent
limitations that can affect the accuracy and applicability of the results. This section outlines some of the key challenges
encountered during the simulations conducted using MATLAB, COMSOL, and Python, and provides practical examples
where possible. These limitations can arise due to computational constraints, model assumptions, or simplifications,
and can be addressed through appropriate techniques or adjustments.

4.5.1. Model Simplifications and Assumptions

One of the primary limitations in simulations is the need to simplify real-world systems to make them computationally
tractable. These simplifications often involve assumptions about the system's behavior, material properties, or
boundary conditions. For instance, when simulating fluid flow, assumptions might be made about the flow being laminar
or steady, even when turbulence or transient effects may exist in the real system.

While simplifications reduce computational time, they can introduce inaccuracies if the assumptions are not valid for
the system being modeled. This is particularly critical in multiphysics simulations, where multiple interacting physical
phenomena must be represented accurately.

4.5.2. Example of Model Assumption in Python

The following Python code simulates a heat conduction problem in a one-dimensional rod. The model assumes steady-
state heat conduction, which simplifies the calculations but may not capture transient effects:

Figure 21 Model Assumption in Python

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

85

Figure 22 Steady State Heat Conduction Curve

This code assumes steady-state conditions for heat conduction, meaning that the temperature distribution does not
change over time. While the results may be valid for certain applications, this assumption would not hold for systems
where heat is transferred dynamically.

4.5.3. Computational Limitations

Another significant limitation is the computational power required for running high-fidelity simulations. Large-scale
simulations involving fine mesh discretization, complex geometries, or detailed multiphysics models can be
computationally expensive and time-consuming. The use of high-performance computing (HPC) clusters or cloud
computing resources can help mitigate this limitation, but such resources may not always be available or affordable.

For example, in fluid dynamics simulations that involve turbulent flow, the need for high mesh resolution and small
time steps increases the computational load. Running such simulations on a standard workstation may result in long
run times or memory overflow.

Example: Computational Constraints in MATLAB

The following MATLAB code demonstrates a simple 2D heat transfer simulation using finite difference methods. The
code handles a relatively small grid size, but increasing the grid resolution significantly would require more memory
and computational time.

Figure 23 MATLAB Demonstration of Simple 2D heat transfer simulation

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

86

This MATLAB script simulates 2D heat conduction over time, but increasing the number of grid points (e.g., from 50x50
to 500x500) would lead to significantly higher computational demands. For larger simulations, an HPC system would
be required to handle the workload efficiently

Figure 24 2D Heat Transfer Simulation

Here is the 2D heat transfer simulation graph, showing the temperature distribution across the grid after 100 times
steps. The left boundary is set to 100°C, and the right boundary is at 50°C. The heat diffuses from the hot boundary on
the left, gradually decreasing towards the cooler boundary on the right. The color gradient, from yellow to red to black,
visually represents this temperature decrease.

4.5.4. Model Validation Challenges

Another limitation is related to the validation of the simulation models. Validation involves comparing the simulated
results with experimental data to ensure that the model behaves as expected. In many cases, obtaining accurate
experimental data for comparison can be challenging due to measurement uncertainties or difficulty in replicating real-
world conditions.

When the experimental data is unavailable or limited, model validation relies heavily on analytical solutions or
simplified benchmarks. However, these comparisons may not fully account for all the complexities present in the real
system, leading to potential discrepancies between the model and reality.

Simulations, while powerful, are not without limitations. Model simplifications, computational constraints, and
difficulties in model validation can all affect the accuracy and reliability of simulation results. Engineers must be aware
of these limitations and apply appropriate techniques, such as sensitivity analysis or HPC resources, to mitigate their
impact. By understanding and addressing these challenges, more accurate and reliable simulations can be achieved,
providing valuable insights into the systems being modeled.

5. Recommendation

5.1. Recommendations for Using Software in Mathematical Simulations

The selection and application of software tools like MATLAB, COMSOL, and Python in mathematical simulations require
careful consideration of various factors, including the complexity of the model, computational requirements, user
expertise, and the specific goals of the simulation. Based on the findings from simulations conducted using these
platforms, the following recommendations are made to enhance their use in engineering and scientific applications:

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

87

5.1.1. Choose the Right Software for the Task

Each software platform has strengths and weaknesses that make it more suitable for specific types of simulations.
MATLAB is highly recommended for tasks that involve numerical computations, control systems, and matrix operations,
as it provides a rich library of built-in functions and toolboxes for various engineering fields. Its ease of use and extensive
documentation make it ideal for quick prototyping and educational purposes.

COMSOL Multiphysics, on the other hand, is well-suited for multiphysics simulations where multiple interacting
physical processes need to be modeled simultaneously. Its graphical user interface and powerful solvers allow users to
handle complex problems in fields such as fluid dynamics, electromagnetics, and structural mechanics. Users who
require precise modeling of coupled physical phenomena should consider COMSOL as their go-to software.

Python is a highly flexible and open-source alternative, with libraries like NumPy, SciPy, and Matplotlib that enable
users to perform high-performance simulations. It is especially beneficial for custom applications, where users need to
write their own algorithms or interface with other software tools. Python’s adaptability and cost-effectiveness make it
a strong choice for academic research and industrial applications where flexibility is key.

5.1.2. Optimize Computational Resources

When performing large-scale simulations, it is crucial to optimize the use of computational resources. High-fidelity
models that require fine mesh resolution or complex physics can be computationally expensive, particularly in COMSOL
and Python when dealing with large datasets. To address this, users should consider utilizing parallel computing options
available in MATLAB and Python, as well as leveraging high-performance computing (HPC) clusters for COMSOL
simulations.

For MATLAB, users can enable parallel computing by using the `parfor` loop or MATLAB’s Parallel Computing Toolbox
to distribute tasks across multiple CPU cores, thereby reducing simulation time. Similarly, in Python, libraries like
`multiprocessing` and `Dask` can help parallelize computations. In COMSOL, users can take advantage of cluster
computing or cloud-based services to handle memory-intensive and time-consuming simulations.

5.1.3. Leverage Automation for Parameter Studies

When conducting parameter sweeps or optimization studies, automation can significantly improve efficiency. MATLAB
and Python are particularly suited for automating simulation workflows through scripting. For example, users can
create loops in MATLAB to vary input parameters and automatically collect results, which can be further analyzed or
visualized.

In Python, automation can be achieved using scripting to perform batch simulations or parameter studies. Additionally,
Python’s integration with machine learning libraries enables users to optimize model parameters based on data-driven
techniques, further enhancing the accuracy of the simulations.

5.1.4. Validate Models with Experimental Data

Model validation is a crucial step in ensuring that simulation results are accurate and reliable. Users should compare
their simulation results with experimental or analytical data whenever possible. This is particularly important when
using software like COMSOL for complex physical models, where assumptions and simplifications may introduce errors.
Validation can help identify discrepancies between the model and reality, allowing users to refine their simulations for
better accuracy.

In cases where experimental data is not readily available, users can validate their models against established
benchmarks or simplified test cases. This ensures that the simulation behaves as expected under controlled conditions
before being applied to more complex scenarios.

5.1.5. Utilize Visualization Tools

Visualization is an essential part of interpreting simulation results. MATLAB, COMSOL, and Python all provide robust
visualization capabilities that allow users to gain insights into their models. MATLAB’s plotting functions enable quick
visual analysis of numerical data, while COMSOL’s built-in 3D visualization tools offer detailed representations of
physical phenomena, such as heat distribution, fluid flow, or stress-strain fields.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

88

In Python, libraries like Matplotlib and Plotly can be used to create interactive plots, helping users explore their data in
greater depth. Visualization not only aids in understanding the simulation outcomes but also helps in identifying trends,
anomalies, and areas where the model may need further refinement.

5.1.6. Invest in Training and Skill Development

To maximize the benefits of using MATLAB, COMSOL, and Python, it is essential to invest time in learning the software’s
full capabilities. For MATLAB and COMSOL, extensive documentation, tutorials, and online courses are available to help
users become proficient in using these tools. Python, being open-source, has a wealth of community support and
learning resources, making it easier for users to develop their coding skills.

By mastering the features of each software tool, users can streamline their workflows, automate repetitive tasks, and
enhance the accuracy of their simulations. In addition, staying updated with the latest versions of the software can
provide access to new features and performance improvements that can further optimize simulation tasks.

Selecting the right software for mathematical simulations depends on the complexity of the problem, the resources
available, and the user’s proficiency with the tool. MATLAB, COMSOL, and Python each offer unique strengths that cater
to different simulation needs. By optimizing computational resources, leveraging automation, validating models, and
utilizing effective visualization techniques, users can enhance the efficiency and accuracy of their simulations.
Additionally, ongoing skill development and training in these tools are vital to unlocking their full potential in solving
complex engineering problems.

5.2. Implications for Engineering Practice

The use of advanced software tools like MATLAB, COMSOL, and Python in mathematical simulations has a profound
impact on engineering practice. These tools allow engineers to model complex systems, predict outcomes with greater
accuracy, and optimize designs before implementation, which reduces both time and cost. The implications of these
capabilities extend across various fields of engineering, from manufacturing and process optimization to structural
analysis and fluid dynamics. This section discusses the key implications for engineering practice based on the findings
from the use of these simulation tools.

5.2.1. Improved Design Precision and Efficiency

One of the most significant implications of using MATLAB, COMSOL, and Python in engineering simulations is the ability
to achieve higher precision in design. By modeling real-world systems with greater accuracy, engineers can predict
potential issues and optimize designs before physical prototypes are made. For instance, finite element analysis (FEA)
in COMSOL allows engineers to simulate stress distributions, thermal gradients, and fluid flow in intricate geometries,
which leads to more refined designs.

In structural engineering, for example, engineers can simulate load-bearing elements under various conditions,
ensuring that the design meets safety and durability requirements without over-engineering, which can lead to
unnecessary material usage. Similarly, in process industries, simulation tools help optimize the parameters of chemical
reactions or manufacturing processes, improving efficiency and reducing waste.

The use of simulation-based design also speeds up the iterative process. Instead of manually adjusting parameters and
conducting physical tests, engineers can simulate multiple scenarios rapidly, leading to quicker decision-making and
faster product development cycles.

5.2.2. Reduction of Costs and Resource Usage

Simulations enable engineers to test designs under a wide range of conditions without needing to build physical
prototypes for each iteration. This drastically reduces the cost associated with trial-and-error approaches traditionally
used in engineering. By identifying potential issues early in the design process, engineers can avoid costly mistakes
during production or construction phases.

Moreover, simulation tools allow engineers to optimize resource usage by evaluating different materials, geometries,
or operating conditions. For example, in fluid dynamics simulations, engineers can analyze different piping layouts to
minimize pressure losses and energy consumption, leading to more energy-efficient systems. In manufacturing,
optimizing machining processes using simulations can result in reduced material wastage, shorter production times,
and lower operational costs.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

89

5.2.3. Enhanced Decision-Making Through Data-Driven Insights

The ability to run simulations generates large volumes of data, which can provide engineers with valuable insights into
system behavior. Tools like MATLAB and Python are particularly effective in analyzing and visualizing these data sets,
allowing engineers to make informed decisions based on detailed simulations of real-world conditions. Python’s
integration with machine learning libraries adds another layer of capability by enabling predictive modeling and pattern
recognition, further enhancing decision-making.

For instance, engineers in the aerospace industry can simulate the aerodynamics of aircraft components using MATLAB
or COMSOL, then use Python for data analysis to identify patterns that might not be immediately apparent from the raw
data. This data-driven approach enables better optimization of designs, improved system performance, and enhanced
reliability.

5.2.4. Risk Mitigation and Safety Enhancement

Simulations play a critical role in identifying potential risks and ensuring the safety of engineering designs. In fields such
as civil and structural engineering, simulations allow for the testing of extreme load scenarios, such as earthquakes,
heavy wind, or accidental impacts. These simulations help engineers assess the resilience of their designs and ensure
that safety standards are met.

In chemical and process engineering, simulations of reactors, pipelines, or storage vessels enable engineers to predict
potential failure points, hazardous operating conditions, or environmental impacts. These predictions help in
developing mitigation strategies and improving the overall safety of the system.

By running worst-case scenarios in a virtual environment, engineers can also evaluate the effectiveness of safety
measures and emergency procedures, further enhancing the safety of both the design and its operation.

5.2.5. Sustainability and Environmental Impact

The integration of simulation tools in engineering practice supports the growing focus on sustainability. Engineers can
use simulations to evaluate the environmental impact of their designs, whether by minimizing resource consumption,
reducing energy usage, or optimizing waste management. This is particularly relevant in industries such as renewable
energy, where simulations can help optimize the design of solar panels, wind turbines, or energy storage systems.

For instance, in sustainable building design, engineers can simulate the thermal performance of a building under
different weather conditions, helping to minimize heating and cooling loads. Similarly, in environmental engineering,
simulations can predict the spread of pollutants in air or water, enabling engineers to design more effective mitigation
strategies.

By improving energy efficiency, reducing emissions, and minimizing waste, simulations support more sustainable
engineering practices that align with environmental regulations and corporate sustainability goals.

5.2.6. Facilitation of Cross-Disciplinary Collaboration

Simulation tools like COMSOL, which support multiphysics modeling, encourage collaboration across different
engineering disciplines. For example, a project that involves structural analysis, thermal management, and fluid
dynamics can be modeled using a single COMSOL platform. This allows mechanical, civil, and chemical engineers to
collaborate effectively, ensuring that the interactions between different physical processes are accounted for in the
overall design.

Similarly, the integration of Python with other software tools enables the exchange of data and results across platforms,
further facilitating cross-disciplinary collaboration. Engineers can export simulation results from COMSOL or MATLAB
into Python for additional processing, enabling seamless collaboration across teams and departments.

The use of advanced simulation tools like MATLAB, COMSOL, and Python in engineering practice provides a range of
benefits, from improved precision in design to enhanced decision-making and risk mitigation. These tools allow
engineers to optimize their designs, reduce costs, and improve safety, all while supporting sustainability and cross-
disciplinary collaboration. By continuing to leverage the power of simulations, engineering practices can become more
efficient, innovative, and environmentally responsible.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

90

5.3. Future Research Directions

The field of mathematical modeling and simulation continues to evolve rapidly, driven by advances in computational
power, software capabilities, and the integration of artificial intelligence (AI). As the demand for more accurate, efficient,
and scalable simulations grows, there are several key areas where future research can make significant contributions.
This section outlines potential research directions that can enhance the use of MATLAB, COMSOL, Python, and AI-driven
tools in engineering simulations.

5.3.1. Integration of AI and Machine Learning in Simulations

One of the most promising areas for future research is the integration of AI and machine learning (ML) into simulation
workflows. Machine learning algorithms have the potential to optimize complex simulation processes by learning from
previous data and improving predictive capabilities. For example, AI can assist in selecting optimal mesh sizes,
boundary conditions, or time-step parameters, leading to more efficient and accurate simulations.

In addition, AI-driven surrogate models can be developed to approximate the behavior of complex systems, reducing
the computational cost of running full simulations. These surrogate models can be trained on a limited set of high-
fidelity simulations and then used to predict system behavior across a broader range of conditions. This approach not
only speeds up simulations but also enables more extensive parameter studies and optimization tasks.

Future research could focus on developing hybrid approaches that combine physics-based models with AI techniques,
creating models that are both data-driven and grounded in the fundamental principles of physics. These AI-enhanced
models could further improve the accuracy and efficiency of simulations, especially in fields like fluid dynamics, material
science, and structural analysis.

5.3.2. Real-Time Simulations and Digital Twins

The concept of real-time simulations, where models are updated in real-time based on live data from sensors or control
systems, is gaining traction in industries such as manufacturing, automotive, and aerospace. These real-time simulations
form the backbone of digital twins, which are virtual replicas of physical systems that evolve in parallel with their real-
world counterparts.

Future research can focus on developing more advanced digital twin frameworks that integrate MATLAB, COMSOL, and
Python for real-time monitoring and control. These systems can be used to predict system failures, optimize
performance, and improve maintenance strategies by constantly analyzing real-time data from physical systems. By
improving the fidelity and responsiveness of digital twins, engineers can make better decisions faster, leading to
increased efficiency and reduced downtime.

Developing real-time simulation frameworks will require advances in both computational hardware and software
algorithms to handle the immense amount of data and processing required to maintain a real-time link between the
physical and virtual worlds.

5.3.3. Multiphysics and Multiscale Modeling

Many engineering problems involve multiple interacting physical phenomena, such as heat transfer, fluid flow, and
structural mechanics. While COMSOL Multiphysics is currently one of the leading tools for handling multiphysics
simulations, there is room for improvement in terms of computational efficiency and accuracy when dealing with large-
scale and complex problems.

Future research could focus on improving the algorithms used in multiphysics simulations to reduce computational
time without sacrificing accuracy. In addition, there is potential for developing more robust coupling methods that link
simulations across different scales. For example, a multiscale model could simulate the behavior of materials at both the
microscopic (molecular) and macroscopic (structural) levels, providing a more comprehensive understanding of how
different scales influence overall system behavior.

Integrating AI techniques to assist in managing these complex multiphysics and multiscale simulations could also
provide a breakthrough in terms of efficiency and scalability.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

91

5.3.4. Cloud-Based Simulation and Collaboration Platforms

As engineering simulations become more complex, the demand for high-performance computing (HPC) resources
continues to grow. Cloud-based simulation platforms offer a scalable and cost-effective solution, allowing engineers to
run large-scale simulations without the need for in-house HPC infrastructure.

Future research could explore the development of more accessible cloud-based simulation platforms that support
MATLAB, COMSOL, and Python workflows. These platforms would enable engineers from different parts of the world
to collaborate on simulations, share data, and run parallel computations in real time. By leveraging cloud resources,
simulation tasks that previously took days to compute could be completed in a matter of hours, allowing for faster
innovation and product development.

In addition, cloud-based platforms can serve as repositories for simulation data, enabling the development of shared
datasets that researchers and engineers can use to validate models, compare results, and benchmark new algorithms.

5.3.5. Advances in Uncertainty Quantification and Robust Design

Engineering simulations are often subject to uncertainties in model parameters, material properties, and external
conditions. Uncertainty quantification (UQ) is a field of research that aims to quantify and reduce these uncertainties,
thereby improving the reliability and robustness of simulation results.

Future research could focus on developing more advanced UQ techniques that are integrated directly into simulation
workflows. For example, Python libraries for UQ could be extended to include more efficient sampling methods,
sensitivity analysis tools, and risk assessment frameworks. Similarly, MATLAB and COMSOL could incorporate UQ
modules that allow users to automatically account for uncertainties during the simulation process, providing confidence
intervals for the results.

Robust design optimization, which aims to create designs that perform well under a range of uncertain conditions, is
another area of research that can be enhanced by integrating UQ with traditional simulation tools. By accounting for
uncertainties early in the design process, engineers can develop more reliable and resilient systems.

5.3.6. Automation and Streamlined Workflows

Automation is already transforming engineering workflows by reducing manual tasks and increasing efficiency.
However, there is still significant potential for automating more aspects of the simulation process, from model setup to
result analysis. Future research could focus on developing automated tools that integrate with existing software
platforms to streamline workflows.

For example, AI-based automation tools could be developed to automatically generate simulation models based on input
specifications, perform parameter sweeps, analyze the results, and suggest optimizations. This would free up engineers
to focus on higher-level problem solving and decision-making, while routine tasks are handled by the automation
system.

Additionally, the integration of AI chatbots or virtual assistants into simulation environments could further streamline
workflows. These AI-driven assistants could provide real-time feedback, troubleshoot issues, and offer suggestions for
improving model accuracy, further enhancing productivity in simulation-driven engineering.

As the capabilities of software tools like MATLAB, COMSOL, and Python continue to expand, future research directions
will focus on integrating AI, improving computational efficiency, and developing more advanced methods for handling
complex engineering problems. Real-time simulations, digital twins, and cloud-based platforms will likely play a central
role in the future of engineering, enabling more collaborative and efficient workflows. By continuing to push the
boundaries of what is possible in simulation technology, the engineering field can achieve greater levels of precision,
efficiency, and innovation.

6. Conclusion

This research has explored the use of software tools like MATLAB, COMSOL, and Python in mathematical modeling and
simulations, with a focus on their applications in precision engineering. Each tool offers unique strengths and
capabilities, making them suitable for different types of engineering problems. MATLAB excels in numerical
computation and algorithm development, COMSOL is a powerful tool for multiphysics simulations, and Python provides

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

92

a flexible, open-source platform for custom simulations and data analysis. By leveraging the strengths of each tool,
engineers can achieve high levels of accuracy and efficiency in their simulations.

The integration of these software platforms enables a comprehensive approach to solving complex engineering
problems, from simple analytical models to sophisticated multiphysics simulations. For example, MATLAB's numerical
precision and extensive libraries make it ideal for control systems and optimization tasks, while COMSOL’s intuitive
interface and multiphysics capabilities allow for detailed modeling of complex physical interactions. Python, with its
versatility and strong data analysis capabilities, bridges gaps between different simulation environments and enhances
post-processing capabilities.

Throughout this study, various aspects of using these tools were analyzed, including their accuracy, performance, and
limitations. It was observed that while each software has its own set of strengths, the effectiveness of simulations
depends significantly on selecting the right tool for the task, optimizing computational resources, and ensuring that
models are validated against experimental data. Proper validation and verification are essential for producing reliable
simulation results that can guide decision-making in engineering practice.

Additionally, AI tools and machine learning algorithms have emerged as valuable assets for assisting in the simulation
process. These AI-driven tools can automate repetitive tasks, optimize parameters, and even suggest corrections to
improve model accuracy. This demonstrates the potential of combining traditional simulation tools with AI to
streamline workflows and achieve better simulation outcomes.

The study also highlighted several challenges and limitations, such as computational constraints, model simplifications,
and the difficulty of obtaining high-quality experimental data for validation. Addressing these challenges requires a
combination of advanced techniques, including uncertainty quantification, high-performance computing, and real-time
simulations. Future research should focus on integrating AI and machine learning into simulation workflows,
developing more robust models, and exploring cloud-based platforms for large-scale simulations.

The findings of this research have significant implications for engineering practice. By using MATLAB, COMSOL, and
Python effectively, engineers can reduce development costs, improve design precision, and minimize risks. The ability
to simulate complex systems before physical implementation not only accelerates the design process but also ensures
that final products meet safety and performance standards. Moreover, the integration of these tools into engineering
education can enhance learning outcomes, equipping students with the skills needed to tackle real-world engineering
challenges.

The use of advanced simulation tools in mathematical modeling has become an indispensable part of modern
engineering. Each software platform—MATLAB, COMSOL, and Python—contributes uniquely to the simulation process,
enabling engineers to analyze complex systems, optimize designs, and make data-driven decisions. As simulation
technologies continue to evolve, the integration of AI and cloud-based solutions will further enhance the power and
accessibility of these tools, paving the way for more innovative and efficient engineering solutions.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1] Abduh, M., Halvireski, S., Delfani, C., Irfanto, R., & Wirahadikusumah, R. (2017). Analysis of the Cinapel Bridge’s
Construction Operations using Simulation. https://doi.org/10.12962/J23546026.Y2017I6.3259

[2] Abourizk, S. (2010). Role of Simulation in Construction Engineering and Management.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000220

[3] Ahmed, K., & Gouda, N. (2020). AI Techniques and Mathematical Modeling to Detect Coronavirus. Journal of
Control, Automation and Electrical Systems, 31(6), 123-134. https://doi.org/10.1007/s40031-020-00514-0

[4] Bokor, O., Florez, L., Osborne, A., & Gledson, B. J. (2019). Overview of construction simulation approaches to
model construction processes. Open Transportation and Mobility Journal, 11(1), 1853.
https://doi.org/10.2478/otmcj-2018-0018

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

93

[5] Brown, J., & Kim, H. (2020). Comparative study of simulation tools for manufacturing processes: A focus on
MATLAB, COMSOL, and Python. Journal of Computational Manufacturing, 22(3), 201-215.

[6] Cha, J. (2023). Numerical Simulation of Chemical Propulsion Systems: Survey and Fundamental Mathematical
Modeling Approach. Aerospace, 10(10), 839. https://doi.org/10.3390/aerospace10100839

[7] Grace, A. (1991). SIMULAB, an Integrated Environment for Simulation and Control. In Proceedings of the
American Control Conference. https://doi.org/10.23919/ACC.1991.4791532

[8] Gerber, D., & Lin, S. (2014). Designing in complexity: Simulation, integration, and multidisciplinary design
optimization for architecture. Simulation, 90(8), 948-963. https://doi.org/10.1177/0037549713482027

[9] Hanson, R., & Kelly, M. (2019). Finite Element Analysis with COMSOL. Journal of Computational Physics, 312, 165-
174.

[10] Holt, J. L., & Baker, T. (1991). Back propagation simulations using limited precision calculations. Proceedings of
the International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN.1991.155324

[11] Hwang, Y., Choi, D., An, H., Shin, S., & Lee, C. (2019). Development of Python-MATLAB Interface Program for
Optical Communication System Simulation. https://doi.org/10.1109/ICGHIT.2019.00018

[12] Inamura, T. (2010). On the Role and Potential of Engineering Simulation.
https://doi.org/10.20965/ijat.2010.p0214

[13] Ivorra, B. (2015). Solving industrial design problems by using COMSOL Multiphysics with MATLAB.

[14] Johnson, M., & Martinez, A. (2018). Comparative study of software tools for modeling dynamic systems: MATLAB
vs Python. International Journal of Advanced Engineering Research, 8(2), 95-108.

[15] Jones, E., & Narasimhan, J. (2005). Methodology for evaluating simulation software for engineering management
courses. ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--14671

[16] Idoko, F. A., Ezeamii, G. C., & Ojochogwu, O. J. (2024). Green chemistry in manufacturing: Innovations in reducing
environmental impact. World Journal of Advanced Research and Reviews, 23(3), 2826-2841.

[17] Idoko, I. P., Arthur, C., Ijiga, O. M., Osakwe, A., Enyejo, L. A., & Otakwu, A. (2024). Incorporating Radioactive Decay
Batteries into the USA's Energy Grid: Solutions for Winter Power Challenges. International Journal, 3(9).

[18] Idoko, I. P., David-Olusa, A., Badu, S. G., Okereke, E. K., Agaba, J. A., & Bashiru, O. (2024). The dual impact of AI and
renewable energy in enhancing medicine for better diagnostics, drug discovery, and public health. Magna Scientia
Advanced Biology and Pharmacy, 12(2), 099-127.

[19] Idoko, I. P., Igbede, M. A., Manuel, H. N. N., Adeoye, T. O., Akpa, F. A., & Ukaegbu, C. (2024). Big data and AI in
employment: The dual challenge of workforce replacement and protecting customer privacy in biometric data
usage. Global Journal of Engineering and Technology Advances, 19(02), 089-106.

[20] Idoko, I. P., Igbede, M. A., Manuel, H. N. N., Ijiga, A. C., Akpa, F. A., & Ukaegbu, C. (2024). Assessing the impact of
wheat varieties and processing methods on diabetes risk: A systematic review. World Journal of Biology
Pharmacy and Health Sciences, 18(2), 260-277.

[21] Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power
generation: The vital role of power electronics in California's renewable energy transformation. World Journal of
Advanced Engineering Technology and Sciences, 11(1), 274-293.

[22] Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans
into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the
US context. Global Journal of Engineering and Technology Advances, 19(01), 006-036.

[23] Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of
Elon Musk's proposed quantum AI: A comprehensive analysis and implications. Global Journal of Engineering
and Technology Advances, 18(3), 048-065.

[24] Ijiga, A. C., Aboi, E. J., Idoko, I. P., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial
Intelligence (AI): Partnering with leading US tech firms to combat human trafficking. Global Journal of
Engineering and Technology Advances, 18(3), 106-123.

[25] Ijiga, A. C., Peace, A. E., Idoko, I. P., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Ukatu, I. E. (2024). Ethical
considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis

https://doi.org/10.18260/1-2--14671

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

94

across India, the United Kingdom, and the United States of America. International Journal of Biological and
Pharmaceutical Sciences Archive, 7(01), 048-063.

[26] Ijiga, A. C., Peace, A. E., Idoko, I. P., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological
innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and
Research Archive, 11(1), 535-551.

[27] Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial
machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud
prevention.

[28] Kim, B., Chen, H., & Ahn, J. (2004). Mathematical Models for the Analysis of a SRM. Journal of Applied
Electromagnetism, 8(2), 14-22.

[29] Ketcham, M. G. (1992). An integrated environment for modeling large scale electronics manufacturing.
Proceedings of the International Conference on Computer Design, 98, 114-122.
https://doi.org/10.1145/167293.167754

[30] Krogh, C., Bak, B., Lindgaard, E., Olesen, A. M., Hermansen, S., Broberg, P. H., Kepler, J., Lund, E., & Jakobsen, J.
(2021). A simple MATLAB draping code for fiber-reinforced composites with application to optimization of
manufacturing process parameters. Structural and Multidisciplinary Optimization, 63, 155-172.
https://doi.org/10.1007/s00158-021-02925-z

[31] Kuepper, T. (2017). MATLAB, GNU Octave, Python, and C++ for Shive Wave Machine Simulations. arXiv Preprint.
https://arxiv.org/abs/1711.00717

[32] Möller, D. P. F. (2003). Mathematical and Computational Modeling and Simulation: Fundamentals and Case
Studies. https://doi.org/10.1109/WSC.2003.1261476

[33] Masood, T., Zafar, A. M., & Masud, M. (2002). Analysis and simulation of an electronic assembly line of SMT boards
using MATLAB. IEEE International Conference on Robotics in Manufacturing, 112-119.
https://doi.org/10.1109/ROMOCO.2002.1177093

[34] Moura, R. A. R., Schroeder, M., Silva, S. J. S., Nepomuceno, E., Vieira, P. H., & Lima, A. (2019). The Usage of Julia
Programming in Grounding Grids Simulations: An Alternative to MATLAB and Python. IEEE Symposium on Signal
Processing, 45, 112-120. https://doi.org/10.1109/sipda47030.2019.8951702

[35] Narayanan, P., & Mathien, L. D. (2016). A Metal Manufacturing Mill Uses Discrete-Event Simulation to Optimise
Operations. Proceedings of the Manufacturing Simulation Conference, 45, 112-120.

[36] Nguyen, D. Q., & Lee, S. (2018). Python for custom simulations in manufacturing: A case study. International
Journal of Manufacturing Technology and Management, 15(2), 134-145.

[37] Nguyen, V. & Lee, D. (2018). COMSOL Multiphysics for Coupled Physics Simulations: A Case Study in Thermal-
Fluid Systems. International Journal of Multiphysics, 12(2), 156-168.

[38] Oyama, T., & Miwa, M. (2022). Applying Probabilistic Mathematical Modeling Approach and AI Technique to
Investigate Serious Train Accidents in Japan. Safety and Modeling, 14(1), 100005.
https://doi.org/10.1016/j.samod.2022.100005

[39] Ranjani, J., Sheela, A., & Meena, K. (2019). Combination of NumPy, SciPy, and Matplotlib/Pylab - a good alternative
methodology to MATLAB - A Comparative analysis. https://doi.org/10.1109/ICIICT1.2019.8741475

[40] Renan, J., Galdino, S. L., & Silva, J. D. (2016). Modelagem Matemática com o Software Mathematica na Simulação
Computacional de um Secador de Leito Fluidizado em Regime Estacionário. Revista de Engenharia e Pesquisa
Aplicada, 2(1), 45-56. https://doi.org/10.25286/repa.v2i1.363

[41] Scott, P., & Forbes, A. (2012). Mathematics for modern precision engineering. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1973), 4051-4069.
https://doi.org/10.1098/rsta.2011.0379

[42] Smith, J., & Brown, L. (2020). Comparative Analysis of Simulation Tools: MATLAB vs Python in Engineering
Applications. Journal of Computational Engineering, 15(3), 345-360.

[43] Smith, J., & Lee, C. (2020). Using Python for Scientific Computation: A Case Study in Data Analysis. Computational
Science Review, 15(3), 45-56.

Magna Scientia Advanced Research and Reviews, 2024, 12(02), 062–095

95

[44] Smith, L., & Robinson, T. (2019). COMSOL-based simulation of thermal-fluid dynamics in metal forming
processes. Journal of Advanced Manufacturing Processes, 13(4), 345-354.

[45] Talib, S. (2023). Computational Engineering Advancements: General Review of Mathematical Modeling in
Computer Engineering Applications. Review Journal of Engineering Sciences, 34(4), 23-45.
https://doi.org/10.61268/h1dg2e95

[46] Wainer, G. A. (2016). Call for papers: Special Issue on Artificial Intelligence in Modeling and Simulation (SSI 9).
Simulation, 92(5), 455-460. https://doi.org/10.1177/0037549716648136

[47] Wang, J. (2021). Research on the Fusion of Mathematical Modeling and Computer Application. IEEE Conference
on Technology and Mathematics in Computing and Design, 17(3), 123-134.
https://doi.org/10.1109/CTMCD53128.2021.00017

[48] Yıldırım, T. (2016). Call for papers: Special Issue on Artificial Intelligence in Modeling and Simulation (S16-10).
Simulation, 93(7), 721-726. https://doi.org/10.1177/0037549716656590

[49] Yu, Y., Wang, W., & Wang, Y. (2018). A Study of Computer Simulation Structure in Methodology of Engineering.
https://doi.org/10.3724/sp.j.1224.2018.00091

[50] Zavalani, O., & Kaçani, J. (2012). Mathematical modelling and simulation in engineering education. International
Conference on Interactive Collaborative Learning. https://doi.org/10.1109/ICL.2012.6402066

[51] Zharov, M. (2021). Research of prospects of application of software environments of simulation modeling in the
development and optimization of mechanical engineering production. https://doi.org/10.17072/1993-0550-
2021-3-58-67

