Catalog of antidiabetic medicinal plants from the endogenous knowledge of the Wongos of the Idiofa territory in the DR Congo

Rombaud Tamasala NDOMBE 1, *, Deogratias Schie Nkung MUTAMBEL'HITY 1, Constantin Ayingweu LUBINI 2, Assumani Zabo IDRISSA 1, Yvonne Bomangwa Saila IBEBEKE 3 and Jean-Paul Nzambi DIVENGI 4

1 Department of Biology, Faculty of sciences, National Pedagogical University in Kinshasa, DR Congo.
2 Department of environment, Faculty of Sciences, University of Kinshasa in Kinshasa, DR Congo.
3 Department of Chemistry, Faculty of Sciences, National Pedagogical University in Kinshasa, DR Congo.
4 Researcher at the Interdisciplinary Research Center of the National Pedagogical University, DR Congo.

Magna Scientia Advanced Research and Reviews, 2022, 05(02), 019–026

Publication history: Received on 15 May 2022; revised on 26 June 2022; accepted on 28 June 2022

Article DOI: https://doi.org/10.30574/msarr.2022.5.2.0048

Abstract
During two campaigns (2016 and 2018), ethnobotanical surveys of medicinal plants were carried out among the Wongos of the Kipuku Sector Idiofa Territory. They consisted in identifying medicinal plants used in traditional medicine in the treatment of diabetes.

Thirty species have been identified. They are grouped in 29 genera and 21 families among which the Fabaceae, Apocynaceae, Rubiaceae and Clusiaceae are predominant. They all belong to the phylum Spermatophyta.

The predominant methods of preparation are decoction, pounding, maceration and sieving.

The information collected could constitute a database for subsequent research. Indeed, the extraction and identification of new natural active ingredients against diabetes constitute the next stage of the study.

Keywords: Diabetes; Medicinal Plants; Ethnobotany; Wongo People; Kipuku Sector

1. Introduction
Diabetes currently affects around 4% of the world's population and could rise to 5.4% by 2025 [1]. Characterized by permanent hyperglycaemia, this metabolic anomaly is due to a deficit of insulin secretion (Type 1) or to poor use of secreted insulin (Type 2). [2].

WHO encourages the intensification of research into avenues, including those using traditional herbal treatments [3].

This ethnobotanical study aims to fill the void given that the Kipuku sector has not yet been the subject of an ethnobotanical study. A list of medicinal plants used in the traditional treatment of diabetes is established in order to enhance them through the subsequent production of improved traditional medicines.

2. Material and methods

2.1. Description of the study area

*Corresponding author: Rombaud Tamasala NDOMBE
Department of Biology, Faculty of sciences, National Pedagogical University in Kinshasa, DR Congo.

Copyright © 2022 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.
Kipuku is a sector of the territory of Idiofa in the province of Kwilu in DR Congo located between two large rivers Lubwe and Looange commonly called Katembo. Covering an area of 1775 Km². It is bounded to the north by the Kapia sector, to the south by the Belo and Madimbi sector, to the east by the Mapangu sector of Western Kasai and to the west by the Banga and Musanga Idiofa sectors.

Its geographical coordinates are:

- Latitude: 4° 53 and 6° South;
- Longitude: 19° 20 East;
- Altitude: 600 to 700 m above sea level.

![Administrative map of the Kipuku sector](image)

Figure 1 Administrative map of the Kipuku sector

2.2. Methods
2.2.1. Ethnobotanical survey

For the collection of data relating to this research, we collected ethnobotanical information from men aged 40 and over, traditional healers, herbalists, and people who have suffered or are suffering from diabetes. Information on antidiabetic medicinal plants focused on the vernacular names of the species, the part of the plant used in the recipe, the procedure, the dosage and other elements used in the preparation of recipes.

2.2.2. Plant identification

The harvested plants were determined by ourselves with the collaboration of colleagues from the Biology Department and confirmed at the INERA Herbarium at the University of Kinshasa.

3. Results

The botanical collections carried out in the field from 2016-2018 made it possible to identify 30 plant species commonly used in the treatment of diabetes in the Wongo people (Table 1).

Table 1 Medicinal plants used in the treatment of diabetes in the region studied

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Part used</th>
<th>Form administered</th>
<th>Number of quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium cepa L.</td>
<td>Matungulu</td>
<td>Bulb</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Anthocleista schweinfurthii Gilg.</td>
<td>Okal (Mbuun)</td>
<td>Fruit</td>
<td>Crushing, sieving and maceration</td>
<td>1</td>
</tr>
<tr>
<td>Carica papaya L.</td>
<td>Paypay (multiple languages)</td>
<td>Sheet</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Catharanthus roseus (L.) G. Don</td>
<td>Kintuntu (Kikongo)</td>
<td>Root</td>
<td>Maceration</td>
<td>1</td>
</tr>
<tr>
<td>Centella asiatica (L.) Urb</td>
<td></td>
<td>Sheet</td>
<td>Believed</td>
<td>1</td>
</tr>
<tr>
<td>Chrysophyllum lacourtianum De Wild.</td>
<td>Dibamfu (Kikongo)</td>
<td>trunk bark</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Citrus limon (L.) Burme</td>
<td>Munokonangandu (Kikongo)</td>
<td>Fruit</td>
<td>Juice</td>
<td>1</td>
</tr>
<tr>
<td>Colletoecema deweverei (DC Wild.) Small</td>
<td>Mpampr’Nguer (Wongo)</td>
<td>Root</td>
<td>Crushing, sieving and maceration</td>
<td>1</td>
</tr>
<tr>
<td>Costus afer Ker Gawl.</td>
<td>Mikake (Wongo) Misangala(Kikongo)</td>
<td>Stem</td>
<td>Crushing, Extraction</td>
<td>1</td>
</tr>
<tr>
<td>Crossopteryx febrifuga Benth.</td>
<td>Ntweth (Wongo)</td>
<td>trunk bark</td>
<td>Maceration</td>
<td>1</td>
</tr>
<tr>
<td>Funtumia africana (Benth.) Stapf</td>
<td>Bubwera (Wongo)</td>
<td>trunk bark</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Garcinia huillensis Welw. Ex Olive</td>
<td>Ngii-ngion (Mbuun), Munginduwatemu (Pende)</td>
<td>Root</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Garcinia kola Hackel.</td>
<td>Butenth (Wongo), Nten (Mbuun)</td>
<td>Fruit, Trunk Bark</td>
<td>Raw, Decoction, Pounding, Sifting and Maceration</td>
<td>3</td>
</tr>
<tr>
<td>Gnetum africanum Welw.</td>
<td>Mfubwa (Several languages in the DRC)</td>
<td>Sheet</td>
<td>Cooked, pounding, sifting, maceration</td>
<td>2</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Vernacular Name</td>
<td>Plant Part</td>
<td>Preparation</td>
<td>Frequency</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Hymenocardia acida Tul.</td>
<td>Muetsi (Wongo), Muheta (Pende), Ekos (Mbuun)</td>
<td>Root, trunk bark</td>
<td>Maceration</td>
<td>2</td>
</tr>
<tr>
<td>Milicia excelsa (Welw.) C.Berg</td>
<td>Bruntu (Wongo), Mulundu (Pende, Kikongo)</td>
<td>trunk bark</td>
<td>Decoction, sap</td>
<td>3</td>
</tr>
<tr>
<td>Morinda morindoides (Bak)</td>
<td>Konkburur (Wongo), Kongobululu (Kikongo)</td>
<td>Root</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Ocimum basilicum L.</td>
<td>Lumbalumba (Kikongo, Lingala), Onsunsus (Mbuun)</td>
<td>Root</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Pancovia laurentii (De Wild.)</td>
<td>Irweth (Wongo)</td>
<td>trunk bark</td>
<td>Decoction, pounding, sieving</td>
<td>3</td>
</tr>
<tr>
<td>Passiflora quadrangularis L.</td>
<td></td>
<td>Maracuja</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Pentaclethra macrophylla Benth</td>
<td>Busanka (Wongo) Mushinga (Pende)</td>
<td>Fruit</td>
<td>Calcination</td>
<td>1</td>
</tr>
<tr>
<td>Psophocarpus scandens (Endl.) Verdc.</td>
<td></td>
<td>Kikalakasa (common to all the languages of the province of Kwilu, Kwango and Kongo central)</td>
<td>Fruit</td>
<td>Calcination</td>
</tr>
<tr>
<td>Quassia africana (Baill.) Baill</td>
<td>Nyermu-Ntomp (Wongo), Mukilankumbi (Mbuun), Mupesipesi (Kikongo)</td>
<td>Root</td>
<td>Decoction, maceration, pounding, sifting, maceration</td>
<td>3</td>
</tr>
<tr>
<td>Rauvolfia vomitoria Afzel.</td>
<td>Buntontonto (Wongo), Mundondondo (Pende), Onmdundun (Mbuun)</td>
<td>Root</td>
<td>maceration, pounding</td>
<td>2</td>
</tr>
<tr>
<td>Scorodophloeus zenkeri Harms.</td>
<td>Piri (Wongo), Mukubi (Kikongo)</td>
<td>trunk bark</td>
<td>Decoction</td>
<td>2</td>
</tr>
<tr>
<td>Senna siamea (Lam.) Irwin and Barneby</td>
<td>Kintuntu (Kikongo)</td>
<td>Root</td>
<td>Decoction</td>
<td>1</td>
</tr>
<tr>
<td>Syzygium guineense subs guineense (Wild.) DC</td>
<td>Somp (Wongo, Mbuun), Sompo (Pende)</td>
<td>trunk bark</td>
<td>Crushing, maceration, decoction</td>
<td>2</td>
</tr>
<tr>
<td>Tephrosia vogelii Hook.F</td>
<td>Budion (Wongo), Mbaka (Kikongo)</td>
<td>Sheet</td>
<td>Crushing, sieving, maceration</td>
<td>2</td>
</tr>
<tr>
<td>Trichilia gigiliana Harms.</td>
<td>Buntshwel (Wongo)</td>
<td>trunk bark</td>
<td>Crushing, maceration, decoction</td>
<td>2</td>
</tr>
<tr>
<td>Vernonia amygdalina Del.</td>
<td>Gneyompo (Wongo), Obubul (Mbuun)Mukadikadi (Kikongo)</td>
<td>Sheet</td>
<td>Juice</td>
<td>1</td>
</tr>
</tbody>
</table>

The plants inventoried are presented in the catalog according to the scientific name, the vernacular name, and the reported use. The trunk bark is the most used plant organ used in local therapy in the region. It is followed by root, leaf, fruit/seed and finally the bulb and stem. Decoction is the procedure most used in the preparation of recipes, followed by pounding, maceration and sieving, without treatment, cooking and finally calcination. *Garcinia kola, Milicia excelsa, Pancovia laurantii* and, *Quassia africana* are cited three times, by traditional healers (Table 1), *Gnetum africanum, Hymenocardia acida, Rauvolfia vomitoria, Scorodophloeus zenkeri, Syzygium guineense, Tephrosia vogelii and Trichilia gigiliana* mentioned twice and the other species only once.

The 30 plant species are used in herbal medicine for diabetes by the wongo in the Kipuku Sector, including the trunk bark for 11 species, the root for 9 species, the leaf for 6 species, the fruit/seed for 5 species and the bulb and stem for 1 species each. In addition, 18 plant species are used alone in the preparation of medicines and 12 others are used in
combination, of which 2 species (Garcinia kola and Quassia africanaum) are used alone or in combination in the recipes. Thus, there are 26 recipes based on a single plant and 8 recipes in combination of plants, of which the decoction is the most used mode of preparation, water the most used solvent for the preparation of recipes and the oral route. The mode of administration of remedies most used by the population.

4. Discussion

In DR Congo, research into hypoglycemic plants has experienced significant growth in recent years through ethnopharmacological surveys that have covered almost the entire country.

The cultural richness of the DR. Congo through its history, and its very rich biodiversity linked to its geographical location and climate has enabled it to have very extensive traditional knowledge in the field of herbal medicine for chronic diseases, and diabetes in particular, the number of medicinal plants antidiabetics identified to date, testifies to the importance of traditional medicine in the Congolese health system, regardless of urban or rural areas.

Much research has been conducted on the inventory of antidiabetic plants [4]-[6].

As part of this study, the ethnobotanical survey undertaken among elderly men, traditional healers, herbalists, practitioners and people who have suffered or are suffering from diabetes has identified 30 plant species with antidiabetic properties in the territory of Idiofa. It can be observed that most of them are used by the peoples of other African countries for similar or similar prescriptions:

In Benin, 130 antidiabetic species have been identified, including Carica papaya, Catharanthus roseus, Hymenocardia acida, Milicia excelsa, Morindamorindoides, Ocimum gratissimum, Rauwolfia vomitoria and Vernonia amygdalina[7];

In Côte d’Ivoire, of the eighteen identified antidiabetic plant species, [8] include Catharanthus roseus, Cassia senna, Moringa oleifera and Phyllanthus amarus. Still in Ivory Coast, Crossopteryx febrifuga, Morinda morindoides and Senna siamea the following were cited in a collection of 11 medicinal plants from northern Ivory Coast [9].

In Senegal, [10] recognized Alchornea cordifolia, Anocardium occidentalis, Ipomoea batatas and Momordica charantia as hypoglycemic plants in the traditional pharmacopoeia;

In Cameroon, [14] collected 30 medicinal plants sold in Douala markets, including Anthocleista schweinfurthii, Carica papaya and Garcinia kola;

In Togo, ethnobotanical data on antidiabetic plants provide information on 112 plant species belonging to 51 families. The most cited species are Allium sativum, Allium cepa, Guilandina bonduc, Moringaoleifera and Picralima nitida. In terms of recipes, 132 recipes are prepared from the 112 species of plants in this collection. Single plant recipes are 78 (69%) while 54 species (30.4%) are prescribed in combination. The most used organs are the leaves followed by the roots. Decoction is the primary mode of preparation [16].

In DR. Congo, [17] listed 39 medicinal species in the Lukunga District. Four of them are on the Idiofa list. These are: Garcinia huillensis, Garcinia kola, Ocimum basilicum and Quassia africana. [5] reported the use of Mangifera indica, Morinda morindoides and Tetracera poggei, Craterispermum laurinum, Ongokea gore, Polycarpacea corymbosa and Triclipsis spp. as a hypoglycaemic plant in Western Kasai. In Kivu, Schneide, [18] revealed the presence of Spathodea campanulata in the traditional treatment of diabetes mellitus. Among 33 plant species inventoried in the treatment of diabetes mellitus in Kinshasa Mandango and Collaborators[4], retain the following species: Albizia adianthifolia, Annona senegalensis, Bridelia ferruginea, Cassia occidentalis, Crossopteryx febrifuga, Hymenocardia acida, Mangifera
Magna Scientia Advanced Research and Reviews, 2022, 05(02), 019–026

M. indic, Maprounea africana, Morinda lucida, Morinda morindoides, Musanga cecropioideae, Nauclea latifolia, Rauwolfia obscura, Rauvolfia vomitoria, Schwenkia americana, Palisota schweinfurthii.

In the territory of Idiofa some works of Catholic missionaries are noted [21]. Without any proven contact, the peoples of distant countries have produced knowledge that reveals current aspects of their respective social lives. The convergence of the use of these species reflects a certain credibility relating to their effectiveness. The forest and savannas of Africa in general and those of the DRC in particular still close secrets to be revealed with its botanical biodiversity through ethnobotanical research.

Unlike the works cited above, this study focuses on medicinal plants used exclusively in the treatment of diabetes, although they are also used for other pathologies. However, many works on antidiabetic plant species have already been carried out elsewhere.

This study identified 30 plant species and 21 families from 2016-2018, as medicinal plant species used to cure diabetes in the territory of Idiofa.

Of the 21 families listed, the Fabaceae (5 species, 23.8 %), Apocynaceae (3 species, 14.3%), Rubiaceae (3 species, 14.3%), Clusiaceae (2 species, 9.5%). The other families represented by 1 species (4.8%): Asteraceae, Caricaceae, Lamiaceae, Loganiaceae, Meliaceae, Moraceae, Myrtaceae, Passifloraceae, Phyllantaceae, Rutaceae, Sapindaceae, Sapotaceae, Simaroubaceae, Liliaceae, Zingiberaceae and Gnetaceae are antidiabetic families listed. This representativeness in medicinal species which corroborates other work [19;[22], [23, 24, 25] retains Asteraceae, Fabaceae, Rubiaceae and Apocynaceae among the seven most represented families in medicinal plants. The Rubiaceae family has been retained as the most sought after to treat febrile syndromes [20]. Rubiaceae and Fabaceae constitute essentially medicinal families and pass among the families represented by a large number of species. These observations join our analyzes which place the Fabaceae in the first position followed by the Rubiaceae, the Apocynaceae and the Clusiaceae in the floristic solicitude by the communities of the territory of Idiofa to fight against chronic diseases, particularly diabetes.

In DR.Congo, research into hypoglycemic plants has experienced significant growth in recent years through ethnopharmacological surveys that have covered almost the entire country.

The cultural richness of the DR. Congo throughout its history, its very rich biodiversity linked to the geographical location and the climate has enabled it to have very extensive traditional knowledge in the field of herbal medicine for chronic diseases, and diabetes in particular, demonstrated by the number of plants identified antidiabetic medicines, which testifies to the importance of traditional medicine in the Congolese health system.

5. Conclusion

Diabetes is a major public health problem in the DR. Congo. Although the development of modern medicine has resulted in the arrival of modern drugs including insulin, oral antidiabetics, however for socio-economic and cultural reasons a significant proportion of the Congolese population depends on medicinal plants for their treatment. both in rural and urban settings, as estimated by the WHO.

The massive exploitation of medicinal plants by the Wongo populations of the Kipuku sector confirms the fact that medicinal plants are used in traditional therapy.

The use of phytotherapy is frequent in the therapeutic arsenal in diabetics, but this use must be based on scientific studies while specifying the mechanism of action of the plants, the therapeutic and toxic dose: medicinal plants undoubtedly represent a potential source of hypoglycemic substances but they can also reveal sometimes fatal toxic side effects requiring continuous vigilance.

The scientific and industrial sectors must make efforts to unlock the secrets of the panoply of bioactive molecules, naturally present in the plant kingdom, in the hope of developing potentially effective drugs in the management of the treatment of diabetes at the lowest cost.
Compliance with ethical standards

Acknowledgments

We thank all the stakeholders who participated in this study. Our thanks go more particularly to the traditional healers for their agreement.

Disclosure of conflict of interest

There is no conflict of interest be the authors of this manuscript.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

References

