Laxative effect of prebiotics in chronic constipation: Mechanisms of action

Lorenzo De Fraia, Stephanos Christodoulides and Ioannis Patrikios *

European University Cyprus, School of Medicine, Cyprus.

Magna Scientia Advanced Biology and Pharmacy, 2023, 09(02), 008–013

Publication history: Received on 05 May 2023; revised on 13 July 2023; accepted on 16 July 2023

Article DOI: https://doi.org/10.30574/msabp.2023.9.2.0046

Abstract

Constipation is a condition that affects a consistent part of the general population, with increasing numbers of incidence worldwide. Its causes can be attributed to several factors. One of these factors (and one of the most relevant causes) is dietary choices. For instance, poor nutrition habits have been shown to adversely affect the function of the digestive tract, eliciting abnormal physiological responses that might lead to constipation. Prebiotics are specialized types of fermentable fibres which have been hypothesised to play a beneficial role in the treatment of chronic idiopathic constipation. Fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) and inulin are the most common types of prebiotics. There are several studies to demonstrate that prebiotics have many interactions with the bowel and its movements, thus they are potentially beneficial in the treatment of chronic idiopathic constipation. Some prebiotics can retain water and therefore increase stool mass and viscosity, making the passage of faeces through the gastrointestinal tract easier. In addition, prebiotics can feed the probiotic bacteria (the body’s “good” bacteria that synergistically live in the digestive tract), and the fermentation of prebiotics by the probiotic bacteria leads to the production of short-chain fatty acids (SCFAs). SCFA synthesis through prebiotic fermentation has been shown to improve gastrointestinal function and bowel movement. Moreover, prebiotic fermentation in the colon might trigger both immunomodulatory responses and the production of neurotransmitters that elicit stronger contractility in the colon. Prebiotic fermentation from the gut microbiota might trigger the release of neurotransmitters that interact with the central nervous system (CNS) and enteric nervous system (ENS). These bacterial neuromodulators directly affect the digestive nerve terminals, eliciting responses from the digestive tract that result in a faster and easier defaecation. Besides the existing studies that describe the roles of prebiotics in gut health and motility, their beneficial role has not yet been fully understood and proven, thus further research is needed on the topic.

Keywords: Constipation; Dietary fibre; Prebiotics; Gut microbiota; Short chain fatty acids; Mechanisms

1 Introduction

1.1 Chronic constipation

Varying from individual to individual, the normal transit time is between 30 and 40 hours. Constipation is defined as the reduction and infrequency of bowel movement (less than three times a week, with a transit time of more than 70 hours) [1] with the result of poor passage of stool, which usually becomes hard and dry. If it persists for several weeks, it is described as chronic constipation and it is a common condition that affects millions of people every year (up to the 20% of population in determined geographic areas), representing one of the main causes of visit to the gastroenterologist yearly [2][3][4][5]. Chronic constipation has a negative impact on everyday life of the affected individuals, and it presents a socioeconomic burden since it affects nearly 10-15% of the population, with higher incidence in female patients and elderly patients. Chronic constipation has several possible aetiologies. One of the most common is attributed to dietary choices that might affect bowel movement. However, the exact pathophysiology of chronic constipation is not yet fully understood. The diagnosis of chronic constipation is usually performed with the

* Corresponding author: Ioannis Patrikios

Copyright © 2023 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0.
Prebiotics have been shown by some researchers to increase the stool volume and enhance colonic motility. The stool increases in size and volume by absorbing water and bacteria, with this increase associated with an acceleration of the transit time [27]. In addition, water retention can also increase viscosity which might in turn improve stool consistency. Microscopically, the water is absorbed by the fibre cell wall pores, while the capillary areas outside the walls stay empty. The thinner the wall is, the higher is the water binding capacity of prebiotics [28]. Moreover, by increasing the stool volume, prebiotics reduce the bile acid and salt concentration in the faecal matter, thus increasing its osmotic load which might contribute to the transit time acceleration [28] [29].

3.1.2 Gut Microbiota Fermentation

Prebiotic fermentation produces short-chain fatty acids in the colon that increase the osmotic gradient. The increase in the osmotic gradient can increase the stool volume, and therefore accelerate transit time. Fermentation of prebiotics leads to the production of short-chain fatty acids (SCFAs), such as acetic, propionic, and butyric acid. SCFAs might contribute to the pH lowering in the colon, making the replication of several pathogens more difficult and easing the proliferation of the beneficial bacteria (Bifidobacteria and Lactobacilli) [30][31][32][33]. Moreover, SCFAs are absorbed by the intestinal wall mostly by non-ionic diffusion but also by active transport through the sodium-coupled transporter. This can lead to water absorption with a subsequent increase of water in the stool) [34]. The concentration
of SCFAs produced depends on the species and number of the probiotic bacteria present in the gut [35]. Some in vitro studies have shown the connection between SCFAs and gut mucosa through vagal nerve fibres and afferent enteric nerves, which showed to elicit increased contractility of the GI tract. Also, butyrate promotes cell differentiation and arrest, and inhibits the enzyme histone acetylase conversion of primary to secondary bile acids resulting in enhanced serotonin levels, which might lead to increased gut contractility [28][36][37][38].

3.2 Immune System

Prebiotics have been also shown to possess anti-inflammatory properties. SCFA production stimulates T cell production, which subsequently decreases the expression of the gene of histone deacetylase 9, which has been associated with decreased inflammation, allowing better colonic motility [39]. Moreover, butyric acid inhibits histone deacetylase (HDAC) through G protein coupled receptor signalling, resulting in an enhanced intestinal barrier function, with subsequent increased mucosal immunity [40]. The role of prebiotics in inducing gastrointestinal immunity might result in a more functional colon, therefore improving colonic motility [41]. In addition, prebiotic fermentation by Bifidobacteria and Lactobacilli in the gut might lead to the reduction of the number of several harmful pathogens [41]. Another crucial property of prebiotics in immunity is their ability to trigger the production of several cytokines. FOS can enhance the levels of anti-inflammatory compounds in the serum such as CD282+/TLR2+ myeloid dendritic cells and interleukin 4 (IL-4), while they can reduce the expression of interleukin 6 (IL-6) and phagocytosis by the immunity cells, hence, they can decrease inflammation [42] [43]. Enhanced immunity might result in a more functional colon, and therefore might be associated with improved colonic motility [43].

3.3 Nervous System

Prebiotic fermentation has been shown to alter the nervous and consequently the digestive system through the “gut-brain axis” [44]. The fermentation can produce bacterial metabolites that can act directly on Enteric Nervous System (ENS) nerve fibres in the gut, hence, prebiotics may trigger the release of neuromodulators in the digestive tract [45][46]. The ENS mediates most of the digestive functions (motility, immunity, secretions, etc.) through direct control of the organs that make the digestive system (gastrointestinal tract, liver, gallbladder, and pancreas) [47] [48]. One of the neurotransmitters released by prebiotic and gut microbiota interaction in the digestive tract is serotonin (5-hydroxytryptamine or 5-HT), which acts on the ENS enhancing the smooth muscle contractility, thus increasing gut peristalsis [49]. Serotonin is consistently present in the digestive tract, and it is stored in the enterochromaffin cells, whose release is mediated by several stimuli. Serotonin acts on the 5-HT3 receptors, present on the afferent vagal nerve fibres, resulting in an increased degree of colonic contraction [50][51][52][53][54][55].

4 Conclusion

Prebiotics can increase stool mass, enhance gut contractility, and thereby increase stool frequency and soften stool consistency. This can be achieved through several mechanisms involving the gut microbiota, immunomodulatory responses, and neuromodulation. Yet, their beneficial role in the treatment of chronic constipation needs further investigation as the mechanisms of action are still not fully understood to demonstrate a clear positive impact in the treatment of the condition. Further research is required to fully establish the complex interactions of the luminal environment, immune system, and nervous system on gut motility and constipation and how different prebiotics affect them.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References


Bloomfield HE, Kane R, Koeller E, Greer N, MacDonald R, Wilt T. Benefits and Harms of the Mediterranean Diet Compared to Other Diets [Internet]. Washington (DC): Department of Veterans Affairs (US), 2015 Nov. PMCID: PMC5390821.


[39] Clarke ST, Green-Johnson JM, Brooks SP, Ramdath DD, Bercik P, Avila C, Inglis GD, Green J, Yanke LJ, Selinger LB, Kalmokoff M. β-1 Fructan supplementation alters host immune responses in a manner consistent with...


